2245: [SDOI2011]工作安排

Time Limit: 20 Sec  Memory Limit: 512 MB
Submit: 1197  Solved: 580
[Submit][Status][Discuss]

Description

你的公司接到了一批订单。订单要求你的公司提供n类产品,产品被编号为1~n,其中第i类产品共需要Ci件。公司共有m名员工,员工被编号为1~m员工能够制造的产品种类有所区别。一件产品必须完整地由一名员工制造,不可以由某名员工制造一部分配件后,再转交给另外一名员工继续进行制造。

我们用一个由0和1组成的m*n的矩阵A来描述每名员工能够制造哪些产品。矩阵的行和列分别被编号为1~m和1~n,Ai,j为1表示员工i能够制造产品j,为0表示员工i不能制造产品j。


果公司分配了过多工作给一名员工,这名员工会变得不高兴。我们用愤怒值来描述某名员工的心情状态。愤怒值越高,表示这名员工心情越不爽,愤怒值越低,表示
这名员工心情越愉快。员工的愤怒值与他被安排制造的产品数量存在某函数关系,鉴于员工们的承受能力不同,不同员工之间的函数关系也是有所区别的。

对于员工i,他的愤怒值与产品数量之间的函数是一个Si+1段的分段函数。当他制造第1~Ti,1件产品时,每件产品会使他的愤怒值增加Wi,1,当他制造第Ti,1+1~Ti,2件产品时,每件产品会使他的愤怒值增加Wi,2……为描述方便,设Ti,0=0,Ti,si+1=+∞,那么当他制造第Ti,j-1+1~Ti,j件产品时,每件产品会使他的愤怒值增加Wi,j, 1≤j≤Si+1。

你的任务是制定出一个产品的分配方案,使得订单条件被满足,并且所有员工的愤怒值之和最小。由于我们并不想使用Special Judge,也为了使选手有更多的时间研究其他两道题目,你只需要输出最小的愤怒值之和就可以了。

Input

第一行包含两个正整数m和n,分别表示员工数量和产品的种类数;

第二行包含n 个正整数,第i个正整数为Ci

以下m行每行n 个整数描述矩阵A;

下面m个部分,第i部分描述员工i的愤怒值与产品数量的函数关系。每一部分由三行组成:第一行为一个非负整数Si,第二行包含Si个正整数,其中第j个正整数为Ti,j,如果Si=0那么输入将不会留空行(即这一部分只由两行组成)。第三行包含Si+1个正整数,其中第j个正整数为Wi,j

Output

仅输出一个整数,表示最小的愤怒值之和。

Sample Input

2 3

2 2 2

1 1 0

0 0 1

1

2

1 10

1

2

1 6

Sample Output

24

HINT

 

Source

【思路】

最小费用最大流。

构图连边。关于分段函数:只要连Tj-Tj-1容量W费用的边即可,因为题目中有Wi,j <Wi,j+1,所以简单地跑最小费用最大流。

【代码】

 #include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#define FOR(a,b,c) for(int a=(b);a<(c);a++)
using namespace std; typedef long long LL;
const int maxn = +;
const LL INF = 1e9; struct Edge{ int u,v,cap,flow,cost;
}; struct MCMF {
int n,m,s,t;
int inq[maxn],a[maxn],d[maxn],p[maxn];
vector<int> G[maxn];
vector<Edge> es; void init(int n) {
this->n=n;
es.clear();
for(int i=;i<n;i++) G[i].clear();
}
void AddEdge(int u,int v,int cap,int cost) {
es.push_back((Edge){u,v,cap,,cost});
es.push_back((Edge){v,u,,,-cost});
m=es.size();
G[u].push_back(m-);
G[v].push_back(m-);
} bool SPFA(int s,int t,int& flow,LL& cost) {
for(int i=;i<n;i++) d[i]=INF;
memset(inq,,sizeof(inq));
d[s]=; inq[s]=; p[s]=; a[s]=INF;
queue<int> q; q.push(s);
while(!q.empty()) {
int u=q.front(); q.pop(); inq[u]=;
for(int i=;i<G[u].size();i++) {
Edge& e=es[G[u][i]];
int v=e.v;
if(e.cap>e.flow && d[v]>d[u]+e.cost) {
d[v]=d[u]+e.cost;
p[v]=G[u][i];
a[v]=min(a[u],e.cap-e.flow); //min(a[u],..)
if(!inq[v]) { inq[v]=; q.push(v);
}
}
}
}
if(d[t]==INF) return false;
flow+=a[t] , cost+= (LL) a[t]*d[t];
for(int x=t; x!=s; x=es[p[x]].u) {
es[p[x]].flow+=a[t]; es[p[x]^].flow-=a[t];
}
return true;
}
int Mincost(int s,int t,LL& cost) {
int flow=; cost=;
while(SPFA(s,t,flow,cost)) ;
return flow;
}
} mc; int n,m;
int t[maxn]; int main() {
//freopen("in.in","r",stdin);
//freopen("out.out","w",stdout);
scanf("%d%d",&m,&n);
mc.init(m+n+);
int S=m+n,T=S+;
int c;
FOR(i,,n) {
scanf("%d",&c);
mc.AddEdge(m+i,T,c,);
}
FOR(i,,m) FOR(j,,n) {
scanf("%d",&c);
if(c) mc.AddEdge(i,j+m,INF,);
}
FOR(i,,m) {
scanf("%d",&c);
FOR(j,,c) scanf("%d",&t[j]); t[c]=INF;
int w,tt;
FOR(j,,c+) {
scanf("%d",&w);
tt = j==? t[]:t[j]-t[j-];
mc.AddEdge(S,i,tt,w);
}
}
LL cost;
mc.Mincost(S,T,cost);
printf("%lld\n",cost);
return ;
}

bzoj 2245 [SDOI2011]工作安排(最小费用最大流)的更多相关文章

  1. BZOJ 2245: [SDOI2011]工作安排( 费用流 )

    费用流模板题..限制一下不同愤怒值的工作数就可以了. ------------------------------------------------------------------------- ...

  2. bzoj 2245 [SDOI2011]工作安排【最小费用最大流】

    其实不用拆点,对于每个人我们假装他是\( s[i]+1 \)个点,可以由他向T点分别连\( s[i]+1 \)条边,容量为\( t[i][j]-t[i][j-1]\),由S点向所有产品i连容量为c[i ...

  3. bzoj 2245: [SDOI2011]工作安排

    #include<cstdio> #include<iostream> #include<cstring> #define M 10000 #define inf ...

  4. 【BZOJ2245】[SDOI2011]工作安排(费用流)

    [BZOJ2245][SDOI2011]工作安排(费用流) 题面 BZOJ 洛谷 题解 裸的费用流吧. 不需要拆点,只需要连边就好了,保证了\(W_j<W_{j+1}\). #include&l ...

  5. 【BZOJ2245】[SDOI2011]工作安排 拆边费用流

    [BZOJ2245][SDOI2011]工作安排 Description 你的公司接到了一批订单.订单要求你的公司提供n类产品,产品被编号为1~n,其中第i类产品共需要Ci件.公司共有m名员工,员工被 ...

  6. [bzoj2245][SDOI2011]工作安排(费用流)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2245 分析: 要注意到题目下面说的w是单增的 明显的费用流: 弄个源点S,汇点T S连 ...

  7. BZOJ 1061 志愿者招募(最小费用最大流)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1061 题意:申奥成功后,布布经过不懈努力,终于 成为奥组委下属公司人力资源部门的主管.布 ...

  8. bzoj 1070 [SCOI2007]修车(最小费用最大流)

    1070: [SCOI2007]修车 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3515  Solved: 1411[Submit][Status] ...

  9. BZOJ 2668 [cqoi2012]交换棋子 | 最小费用最大流

    传送门 BZOJ 2668 题解 同时分别限制流入和流出次数,所以把一个点拆成三个:入点in(x).中间点mi(x).出点ou(x). 如果一个格子x在初始状态是黑点,则连(S, mi(x), 1, ...

随机推荐

  1. mvc4+jquerymobile页面加载时无法绑定事件

    问题:在view里写js,在页面第一次加载完成后,无法触发事件, 如:按钮click事件,已经在$(function(){  添加了click });但就是无法触发,必须刷新下才可以. 原因分析: 主 ...

  2. c# 操作.config中AppSettings配置节

    ConfigurationSettings.AppSettings[key].ToString(); 这种方式很眼熟吧? 不过这种方式基本过时了,虽然还能用. 微软建议采用ConfigurationM ...

  3. Ubuntu Server 14.04 下root无法ssh登陆

    今天安装了Ubuntu Server 14.04   在终端配置了root密码后,使用SecureCRT和putty竟然不能ssh登陆,SecureCRT一直提示密码不对,但是可以肯定输入的密码100 ...

  4. winform(C#)拖拽实现获得文件路径

    设置Form的AllowDrop为true  private void Form1_DragDrop(object sender, DragEventArgs e)        {          ...

  5. 找出整数中第k大的数

    一  问题描述: 找出 m 个整数中第 k(0<k<m+1)大的整数. 二  举例: 假设有 12 个整数:data[1, 4, -1, -4, 9, 8, 0, 3, -8, 11, 2 ...

  6. Codeforces 551C GukiZ hates Boxes(二分)

    Problem C. GukiZ hates Boxes Solution: 假设最后一个非零的位置为K,所有位置上的和为S 那么答案的范围在[K+1,K+S]. 二分这个答案ans,然后对每个人尽量 ...

  7. git学习小结 (笔记)

    Modesty helps one to go forward, whereas conceit makes one lag behind. "虚心使人进步,骄傲使人落后" 注:本 ...

  8. Centos JAVA Eclipse

    wget http://download.oracle.com/otn-pub/java/jdk/8u5-b13/jdk-8u5-linux-i586.tar.gz vi /etc/profile 在 ...

  9. Oracle数据库之rownum

    1. 介绍 当我们在做查询时,经常会遇到如查询限定行数或分页查询的需求,MySQL中可以使用LIMIT子句完成,在MSSQL中可以使用TOP子句完成,那么在Oracle中,我们如何实现呢? Oracl ...

  10. 原生Ajax + Promise

    有原生写的ajax + promise嫁接下 ;(function(root){ var LD = function(obj){ if( obj instanceof LD ) return obj; ...