bzoj 2245 [SDOI2011]工作安排(最小费用最大流)
2245: [SDOI2011]工作安排
Time Limit: 20 Sec Memory Limit: 512 MB
Submit: 1197 Solved: 580
[Submit][Status][Discuss]
Description
你的公司接到了一批订单。订单要求你的公司提供n类产品,产品被编号为1~n,其中第i类产品共需要Ci件。公司共有m名员工,员工被编号为1~m员工能够制造的产品种类有所区别。一件产品必须完整地由一名员工制造,不可以由某名员工制造一部分配件后,再转交给另外一名员工继续进行制造。
我们用一个由0和1组成的m*n的矩阵A来描述每名员工能够制造哪些产品。矩阵的行和列分别被编号为1~m和1~n,Ai,j为1表示员工i能够制造产品j,为0表示员工i不能制造产品j。
如
果公司分配了过多工作给一名员工,这名员工会变得不高兴。我们用愤怒值来描述某名员工的心情状态。愤怒值越高,表示这名员工心情越不爽,愤怒值越低,表示
这名员工心情越愉快。员工的愤怒值与他被安排制造的产品数量存在某函数关系,鉴于员工们的承受能力不同,不同员工之间的函数关系也是有所区别的。
对于员工i,他的愤怒值与产品数量之间的函数是一个Si+1段的分段函数。当他制造第1~Ti,1件产品时,每件产品会使他的愤怒值增加Wi,1,当他制造第Ti,1+1~Ti,2件产品时,每件产品会使他的愤怒值增加Wi,2……为描述方便,设Ti,0=0,Ti,si+1=+∞,那么当他制造第Ti,j-1+1~Ti,j件产品时,每件产品会使他的愤怒值增加Wi,j, 1≤j≤Si+1。
你的任务是制定出一个产品的分配方案,使得订单条件被满足,并且所有员工的愤怒值之和最小。由于我们并不想使用Special Judge,也为了使选手有更多的时间研究其他两道题目,你只需要输出最小的愤怒值之和就可以了。
Input
第一行包含两个正整数m和n,分别表示员工数量和产品的种类数;
第二行包含n 个正整数,第i个正整数为Ci;
以下m行每行n 个整数描述矩阵A;
下面m个部分,第i部分描述员工i的愤怒值与产品数量的函数关系。每一部分由三行组成:第一行为一个非负整数Si,第二行包含Si个正整数,其中第j个正整数为Ti,j,如果Si=0那么输入将不会留空行(即这一部分只由两行组成)。第三行包含Si+1个正整数,其中第j个正整数为Wi,j。
Output
仅输出一个整数,表示最小的愤怒值之和。
Sample Input
2 2 2
1 1 0
0 0 1
1
2
1 10
1
2
1 6
Sample Output
HINT
Source
【思路】
最小费用最大流。
构图连边。关于分段函数:只要连Tj-Tj-1容量W费用的边即可,因为题目中有Wi,j <Wi,j+1,所以简单地跑最小费用最大流。
【代码】
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#define FOR(a,b,c) for(int a=(b);a<(c);a++)
using namespace std; typedef long long LL;
const int maxn = +;
const LL INF = 1e9; struct Edge{ int u,v,cap,flow,cost;
}; struct MCMF {
int n,m,s,t;
int inq[maxn],a[maxn],d[maxn],p[maxn];
vector<int> G[maxn];
vector<Edge> es; void init(int n) {
this->n=n;
es.clear();
for(int i=;i<n;i++) G[i].clear();
}
void AddEdge(int u,int v,int cap,int cost) {
es.push_back((Edge){u,v,cap,,cost});
es.push_back((Edge){v,u,,,-cost});
m=es.size();
G[u].push_back(m-);
G[v].push_back(m-);
} bool SPFA(int s,int t,int& flow,LL& cost) {
for(int i=;i<n;i++) d[i]=INF;
memset(inq,,sizeof(inq));
d[s]=; inq[s]=; p[s]=; a[s]=INF;
queue<int> q; q.push(s);
while(!q.empty()) {
int u=q.front(); q.pop(); inq[u]=;
for(int i=;i<G[u].size();i++) {
Edge& e=es[G[u][i]];
int v=e.v;
if(e.cap>e.flow && d[v]>d[u]+e.cost) {
d[v]=d[u]+e.cost;
p[v]=G[u][i];
a[v]=min(a[u],e.cap-e.flow); //min(a[u],..)
if(!inq[v]) { inq[v]=; q.push(v);
}
}
}
}
if(d[t]==INF) return false;
flow+=a[t] , cost+= (LL) a[t]*d[t];
for(int x=t; x!=s; x=es[p[x]].u) {
es[p[x]].flow+=a[t]; es[p[x]^].flow-=a[t];
}
return true;
}
int Mincost(int s,int t,LL& cost) {
int flow=; cost=;
while(SPFA(s,t,flow,cost)) ;
return flow;
}
} mc; int n,m;
int t[maxn]; int main() {
//freopen("in.in","r",stdin);
//freopen("out.out","w",stdout);
scanf("%d%d",&m,&n);
mc.init(m+n+);
int S=m+n,T=S+;
int c;
FOR(i,,n) {
scanf("%d",&c);
mc.AddEdge(m+i,T,c,);
}
FOR(i,,m) FOR(j,,n) {
scanf("%d",&c);
if(c) mc.AddEdge(i,j+m,INF,);
}
FOR(i,,m) {
scanf("%d",&c);
FOR(j,,c) scanf("%d",&t[j]); t[c]=INF;
int w,tt;
FOR(j,,c+) {
scanf("%d",&w);
tt = j==? t[]:t[j]-t[j-];
mc.AddEdge(S,i,tt,w);
}
}
LL cost;
mc.Mincost(S,T,cost);
printf("%lld\n",cost);
return ;
}
bzoj 2245 [SDOI2011]工作安排(最小费用最大流)的更多相关文章
- BZOJ 2245: [SDOI2011]工作安排( 费用流 )
费用流模板题..限制一下不同愤怒值的工作数就可以了. ------------------------------------------------------------------------- ...
- bzoj 2245 [SDOI2011]工作安排【最小费用最大流】
其实不用拆点,对于每个人我们假装他是\( s[i]+1 \)个点,可以由他向T点分别连\( s[i]+1 \)条边,容量为\( t[i][j]-t[i][j-1]\),由S点向所有产品i连容量为c[i ...
- bzoj 2245: [SDOI2011]工作安排
#include<cstdio> #include<iostream> #include<cstring> #define M 10000 #define inf ...
- 【BZOJ2245】[SDOI2011]工作安排(费用流)
[BZOJ2245][SDOI2011]工作安排(费用流) 题面 BZOJ 洛谷 题解 裸的费用流吧. 不需要拆点,只需要连边就好了,保证了\(W_j<W_{j+1}\). #include&l ...
- 【BZOJ2245】[SDOI2011]工作安排 拆边费用流
[BZOJ2245][SDOI2011]工作安排 Description 你的公司接到了一批订单.订单要求你的公司提供n类产品,产品被编号为1~n,其中第i类产品共需要Ci件.公司共有m名员工,员工被 ...
- [bzoj2245][SDOI2011]工作安排(费用流)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2245 分析: 要注意到题目下面说的w是单增的 明显的费用流: 弄个源点S,汇点T S连 ...
- BZOJ 1061 志愿者招募(最小费用最大流)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1061 题意:申奥成功后,布布经过不懈努力,终于 成为奥组委下属公司人力资源部门的主管.布 ...
- bzoj 1070 [SCOI2007]修车(最小费用最大流)
1070: [SCOI2007]修车 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3515 Solved: 1411[Submit][Status] ...
- BZOJ 2668 [cqoi2012]交换棋子 | 最小费用最大流
传送门 BZOJ 2668 题解 同时分别限制流入和流出次数,所以把一个点拆成三个:入点in(x).中间点mi(x).出点ou(x). 如果一个格子x在初始状态是黑点,则连(S, mi(x), 1, ...
随机推荐
- HTML5 文件域+FileReader 分段读取文件并上传到服务器(六)
说明:使用Ajax方式上传,文件不能过大,最好小于三四百兆,因为过多的连续Ajax请求会使后台崩溃,获取InputStream中数据会为空,尤其在Google浏览器测试过程中. 1.简单分段读取文件为 ...
- Activity Threa创建Window和View分析
http://blog.csdn.net/ljsbuct/article/details/7094580 1. 入口. 以前一直都说Activity的人口是onCreate方法.其实android上一 ...
- SimpleDateFormat使用详解
http://blog.csdn.net/gubaohua/article/details/575488 public class SimpleDateFormat extends DateForma ...
- asp.net中ashx文件如何调用session
如果你要保证数据的安全性,你可以在ashx中使用session验证.如:你的index.aspx中使用jquery回调ashx数据,那么在index.aspx page_load时session[&q ...
- android SDK 代理配置(东北大学)
启动 Android SDK Manager ,打开主界面,依次选择「Tools」.「Options...」,弹出『Android SDK Manager - Settings』窗口: 在『Andro ...
- iOS中常用的正则表达式
iOS常用正则表达式 正则表达式用于字符串处理.表单验证等场合,实用高效.现将一些常用的表达式收集于此,以备不时之需. 匹配中文字符的正则表达式: [\u4e00-\u9fa5]评注:匹配中文还真是个 ...
- maven mirror
国内连接maven官方的仓库更新依赖库,网速一般很慢,收集一些国内快速的maven仓库镜像以备用. ====================国内OSChina提供的镜像,非常不错=========== ...
- HDU 2295.Radar (DLX重复覆盖)
2分答案+DLX判断可行 不使用的估计函数的可重复覆盖的搜索树将十分庞大 #include <iostream> #include <cstring> #include < ...
- 【POJ3580】【splay版】SuperMemo
Description Your friend, Jackson is invited to a TV show called SuperMemo in which the participant i ...
- Xcode 使用自定义字体
添加对应的字体(.ttf或.odf)到工程的resurce,使用cocos2d中的FontLabel库,FontLabel继承于UILabel,象UILabel一样使用就好了 fontName直接使用 ...