简单的FIRST+集演示程序
/*
* 该程序用于计算某个非终结符的 FIRST+ 集合
* RexfieldVon
* 2013年6月30日16:02:47
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h> /* 三级指针
* 第一级指向整个产生式组
* 第二级指向单个产生式
* 第三级指向产生式符号单元
* 约定:所有的大写字母为非终结符
* 假设:无左递归、FIRST集中不会出现重复符号
*/
char*** GrammerRule; /*
* 初始化文法序列
*/
void InitizationGrammerRule()
{
// 分配表头空间
GrammerRule = (char***)malloc(sizeof(int) * );
memset(GrammerRule, '\0', sizeof(int) * );
// 分配文法空间并写入产生式
// G -> E
GrammerRule['G'] = (char**)malloc(sizeof(int) * );
GrammerRule['G'][] = (char*)malloc();
memcpy(GrammerRule['G'][], "E\0", ); // E
GrammerRule['G'][] = NULL;
// E -> T F
GrammerRule['E'] = (char**)malloc(sizeof(int) * );
GrammerRule['E'][] = (char*)malloc();
memcpy(GrammerRule['E'][], "TF\0", ); // T F
GrammerRule['E'][] = NULL;
// F -> '+' T F | '-' T F | e
GrammerRule['F'] = (char**)malloc(sizeof(int) * );
GrammerRule['F'][] = (char*)malloc();
memcpy(GrammerRule['F'][], "+TF\0", ); // '+' T F
GrammerRule['F'][] = (char*)malloc();
memcpy(GrammerRule['F'][], "-TF\0", ); // '-' T F
GrammerRule['F'][] = (char*)malloc();
memcpy(GrammerRule['F'][], "\0", ); // e (该产生式存在但是为空)
GrammerRule['F'][] = NULL;
// T -> A U
GrammerRule['T'] = (char**)malloc(sizeof(int) * );
GrammerRule['T'][] = (char*)malloc();
memcpy(GrammerRule['T'][], "AU\0", ); // A U
GrammerRule['T'][] = NULL;
// U -> '*' A U | '/' A U | e
GrammerRule['U'] = (char**)malloc(sizeof(int) * );
GrammerRule['U'][] = (char*)malloc();
memcpy(GrammerRule['U'][], "*AU\0", ); // '*' A U
GrammerRule['U'][] = (char*)malloc();
memcpy(GrammerRule['U'][], "/AU\0", ); // '/' A U
GrammerRule['U'][] = (char*)malloc();
memcpy(GrammerRule['U'][], "\0", ); // e (该产生式存在但是为空)
GrammerRule['U'][] = NULL;
// A -> '(' E ')' | d | n
GrammerRule['A'] = (char**)malloc(sizeof(int) * );
GrammerRule['A'][] = (char*)malloc();
memcpy(GrammerRule['A'][], "(E)\0", ); // '(' E ')'
GrammerRule['A'][] = (char*)malloc();
memcpy(GrammerRule['A'][], "d\0", ); // d
GrammerRule['A'][] = (char*)malloc();
memcpy(GrammerRule['A'][], "n\0", ); // n
GrammerRule['A'][] = NULL;
} /*
* 取得终结符数量
*/
int GetTerminalCount()
{
int i, TerminalCount = ;
for (i = ; i < ; i++)
{
if (GrammerRule[i] != NULL)
{
int k = ;
while (GrammerRule[i][k] != NULL)
{
int n = ;
while (GrammerRule[i][k][n] != '\0')
{
char c = GrammerRule[i][k][n];
if (c < 'A' || c > 'Z')
{
TerminalCount++;
}
n++;
}
k++;
}
}
}
return TerminalCount;
} /*
* 递归取得 FIRST 集
* Token : char 需要打印的符号
* FIRST : char* FIRST集
* Ptr : int* FIRST集的位置指针
*/
void GetFIRST(char Token, char *FIRST, int *Ptr)
{
if (Token >= 'A' && Token <= 'Z' && GrammerRule[Token] != NULL)
{
int i = ;
while (GrammerRule[Token][i] != NULL)
{
GetFIRST(GrammerRule[Token][i++][], FIRST, Ptr);
}
}
else if (Token < 'A' || Token > 'Z')
{
FIRST[*Ptr] = Token;
*Ptr = *Ptr + ;
}
} /*
* 添加符号到 FOLLOW 集
* FOLLOW : char* FOLLOW集
* Ptr : int* FOLLOW集的位置指针
* NewItem : char 将加入的符号
*/
void AddFOLLOWItem(char *FOLLOW, int *Ptr, char NewItem)
{
int i = ;
for (; i < *Ptr; i++)
{
if (FOLLOW[i] == NewItem)
{
return ;
}
}
FOLLOW[*Ptr] = NewItem;
*Ptr = *Ptr + ;
} /*
* 取得 FOLLOW 集
* Unterminal : char 需要打印的非终结符
* FOLLOW : char* FOLLOW集
* Ptr : int* FOLLOW集的位置指针
* TerminalCount : int 终结符数量
*/
void GetFOLLOW(char Unterminal, char *FOLLOW, int *Ptr, int TerminalCount)
{
int RuleIndex, ExprIndex, TokenIndex;
// 开始遍历整个文法
for (RuleIndex = ; RuleIndex < ; RuleIndex++)
{
if (GrammerRule[RuleIndex] == NULL)
{
continue;
}
// 搜索整个文法找到指定的非终结符
for (ExprIndex = ; GrammerRule[RuleIndex][ExprIndex] != ; ExprIndex++)
{
for (TokenIndex = ; GrammerRule[RuleIndex][ExprIndex][TokenIndex] != '\0'; TokenIndex++)
{
if (GrammerRule[RuleIndex][ExprIndex][TokenIndex] == Unterminal)
{
char nc = GrammerRule[RuleIndex][ExprIndex][TokenIndex + ];
if (nc == '\0' && RuleIndex != Unterminal) // 情形三:反复计算:将FOLLOW(P)加入FOLLOW(U)
{
GetFOLLOW((char)RuleIndex, FOLLOW, Ptr, TerminalCount);
}
else if (nc >= 'A' && nc <= 'Z') // 情形二:间接计算:将FIRST(P)加入FOLLOW(U)
{
char *FIRST = (char*)malloc(TerminalCount + );
memset(FIRST, '\0', TerminalCount + );
int FIRSTPtr = , InsertPtr;
GetFIRST(nc, FIRST, &FIRSTPtr);
for (InsertPtr = ; InsertPtr < FIRSTPtr; InsertPtr++)
{
if (FIRST[InsertPtr] != '\0')
{
AddFOLLOWItem(FOLLOW, Ptr, FIRST[InsertPtr]);
}
else // 对于 P->... U B,FOLLOW ← FIRST(B) - <e> + FOLLOW(P)
{
GetFOLLOW((char)RuleIndex, FOLLOW, Ptr, TerminalCount);
}
}
}
else if (nc != '\0') // 情形一:直接计算:将终结符加入FOLLOW(U)
{
AddFOLLOWItem(FOLLOW, Ptr, nc);
}
}
}
}
}
} void GetFIRSTPlus(char Unterminal, int Index, char *FIRSTPlus, int *Ptr, int TerminalCount)
{
if (GrammerRule[Unterminal][Index] != NULL)
{
GetFIRST(GrammerRule[Unterminal][Index][], FIRSTPlus, Ptr);
int i = ;
while (i < *Ptr)
{
if (FIRSTPlus[i++] == '\0')
{
FIRSTPlus[*Ptr] = '\377';
*Ptr = *Ptr + ;
GetFOLLOW(Unterminal, FIRSTPlus, Ptr, TerminalCount);
break;
}
}
}
} /*
* 打印指定非终结符的 FIRST+ 集
* Unterminal : char 需要打印的非终结符
* TerminalCount : int 终结符数量
*/
void PrintUnterminalFIRSTPlus(char Unterminal, int TerminalCount)
{
char *FIRSTPlus = (char*)malloc(TerminalCount + );
memset(FIRSTPlus, '\0', TerminalCount + );
int Ptr, Index = , i;
for (; GrammerRule[Unterminal][Index] != NULL; Index++)
{
Ptr = ;
GetFIRSTPlus(Unterminal, Index, FIRSTPlus, &Ptr, TerminalCount);
printf("FIRST+(%c, %c): ", Unterminal, GrammerRule[Unterminal][Index][]);
for (i = ; i < Ptr; i++)
{
if (FIRSTPlus[i] == '\377')
{
printf("<eof> ");
}
else if (FIRSTPlus[i] == '\0')
{
printf("<e> ");
}
else
{
printf("%c ", FIRSTPlus[i]);
}
}
printf("\n");
}
} int main(int argc, char **argv)
{
InitizationGrammerRule(); // 初始化文法
int TerminalCount = GetTerminalCount();
PrintUnterminalFIRSTPlus('E', TerminalCount);
PrintUnterminalFIRSTPlus('F', TerminalCount);
PrintUnterminalFIRSTPlus('T', TerminalCount);
PrintUnterminalFIRSTPlus('U', TerminalCount);
PrintUnterminalFIRSTPlus('A', TerminalCount);
return ;
}
简单的FIRST+集演示程序的更多相关文章
- 简单的FOLLOW集演示程序
/* * 该程序用于计算某个非终结符的 FOLLOW 集合 * RexfieldVon * 2013年6月30日16:02:47 */ #include <stdio.h> #includ ...
- 简单的FIRST集演示程序
/* * 该程序用于计算某个非终结符的 FIRST 集合 * RexfieldVon * 2013年6月29日19:53:45 * 2013年7月3日22:01:57 修改 GetFIRST 例程以简 ...
- POJ 2524 (简单并查集) Ubiquitous Religions
题意:有编号为1到n的学生,然后有m组调查,每组调查中有a和b,表示该两个学生有同样的宗教信仰,问最多有多少种不同的宗教信仰 简单并查集 //#define LOCAL #include <io ...
- poj1611 简单并查集
The Suspects Time Limit: 1000MS Memory Limit: 20000K Total Submissions: 32781 Accepted: 15902 De ...
- 1213 How Many Tables(简单并查集)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1213 简单并查集,统计单独成树的数量. 代码: #include <stdio.h> #i ...
- 【简单并查集】Farm Irrigation
Farm Irrigation Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other) Tot ...
- RocketMQ 简单梳理 及 集群部署笔记【转】
一.RocketMQ 基础知识介绍Apache RocketMQ是阿里开源的一款高性能.高吞吐量.队列模型的消息中间件的分布式消息中间件. 上图是一个典型的消息中间件收发消息的模型,RocketMQ也 ...
- 搭建简单的hadoop集群(译文)
本文翻译翻译自http://hadoop.apache.org/docs/r2.8.0/hadoop-project-dist/hadoop-common/ClusterSetup.html 具体的实 ...
- ACM_“打老虎”的背后(简单并查集)
“打老虎”的背后 Time Limit: 2000/1000ms (Java/Others) Problem Description: “习大大”自担任国家主席以来大力反腐倡廉,各地打击贪腐力度也逐步 ...
随机推荐
- System.Data.DbType的字符串和数据库中字符串类型对应关系
前两天项目中因为历史原因数据库中的一个字段是varchar类型,在做SQL参数化处理时候默认都是DbType.String, 免得查询出现数据转换,于是做类型一致,搜了下对应关系还没找到,只好自己打开 ...
- WPF 自定义滚动条样式
先看一下效果: 先分析一下滚动条有哪儿几部分组成: 滚动条总共有五部分组成: 两端的箭头按钮,实际类型为RepeatButton Thumb 两端的空白,实际也是RepeatButton 最后就是Th ...
- pojo和JavaBean的区别
javabean可以处理业务,pojo不可以. pojo就是get 和set 例如: Student{ id; name; get();... set();...} javabean可以实现业务逻辑 ...
- [jQuery编程挑战]007 切换数据表格的行列
<!DOCTYPE html> <html lang="zh"> <head> <meta charset="utf-8&quo ...
- sphinx (coreseek)——3、区段查询 与 增量索引实例
首先本文测试数据100多万的域名的wwwtitle 信息 检索数据: 首先建立临时表格: CREATE TABLE `sph_counter` ( `index_id` ) NOT NULL, `m ...
- Ubuntu14.02 Sublimte2安装
$sudo add-apt-repository ppa:webupd8team/sublime-text-2 $sudo apt-get update $sudo apt-get install s ...
- Zookeeper的设计模式之观察者模式(十)
Watcher是Zookeeper用来实现distribute lock, distribute configure, distribute queue等应用的主要手段.要监控data_tree上的任 ...
- 关于set或map的key使用自定义类型的问题
我们都知道set或map的key使用自定义类型时必须重载<关系运算符 但是,还有一个条件,所调用重载的小于操作符,使用的对象必须是const 而对象调用的方法也必须是const的 1 #incl ...
- 工作总结:检查字符串合法性(C++)
BOOL CLiftCtrlModbusConfigDlg::CheckValid(const CString &str) { ASSERT(str.GetLength() > ); ] ...
- List of XML and HTML character entity references
A character entity reference refers to the content of a named entity. An entity declaration is creat ...