hiho #1079 : 离散化
描述
小Hi和小Ho在回国之后,重新过起了朝7晚5的学生生活,当然了,他们还是在一直学习着各种算法~
这天小Hi和小Ho所在的学校举办社团文化节,各大社团都在宣传栏上贴起了海报,但是贴来贴去,有些海报就会被其他社团的海报所遮挡住。看到这个场景,小Hi便产生了这样的一个疑问——最后到底能有几张海报还能被看见呢?
于是小Ho肩负起了解决这个问题的责任:因为宣传栏和海报的高度都是一样的,所以宣传栏可以被视作长度为L的一段区间,且有N张海报按照顺序依次贴在了宣传栏上,其中第i张海报贴住的范围可以用一段区间[a_i, b_i]表示,其中a_i, b_i均为属于[0, L]的整数,而一张海报能被看到当且仅当存在长度大于0的一部分没有被后来贴的海报所遮挡住。那么问题就来了:究竟有几张海报能被看到呢?
输入
每个测试点(输入文件)有且仅有一组测试数据。
每组测试数据的第1行为两个整数N和L,分别表示总共贴上的海报数量和宣传栏的宽度。
每组测试数据的第2-N+1行,按照贴上去的先后顺序,每行描述一张海报,其中第i+1行为两个整数a_i, b_i,表示第i张海报所贴的区间为[a_i, b_i]。
对于100%的数据,满足N<=10^5,L<=10^9,0<=a_i<b_i<=L。
输出
对于每组测试数据,输出一个整数Ans,表示总共有多少张海报能被看到。
样例输入
5 10
4 10
0 2
1 6
5 9
3 4
样例输出
5 题解:离散线段树好了,标记是要down的!!!
要注意的是[1,2],[2,3],[3,4]是算3张海报,因为海报实际上是一个连续的区间,所以下标为i对应的是[i,i+1]的区间。所以对于区间[a,b],线段树更新的节点范围是[a,b-1]。还是相当关键的!
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstring>
#define PAU putchar(' ')
#define ENT putchar('\n')
#define CH for(int d=0;d<2;d++)if(ch[d])
#define lson x->ch[0],L,M
#define rson x->ch[1],M+1,R
using namespace std;
const int maxn=+,maxnode=+,inf=-1u>>;
struct node{
node*ch[];int siz;int t;
void addt(int a){t=a;return;}
void down(){if(t){CH{ch[d]->addt(t);}t=;}return;}
}seg[maxnode],*nodecnt=seg,*root;
struct data{int L,R;}d[maxn];
int n,num[maxn],A[maxn],ql,qr,cv,pos;bool ans[maxn];
void build(node*&x=root,int L=,int R=n<<){
x=nodecnt++;int M=L+R>>;if(L==R)x->t=;
else build(lson),build(rson);x->siz=R-L+;return;
}
void update(node*&x=root,int L=,int R=n<<){
if(ql<=L&&R<=qr)x->addt(cv);
else{int M=L+R>>;x->down();
if(ql<=M)update(lson);
if(qr>M)update(rson);
}return;
}
void query(node*x=root,int L=,int R=n<<){
if(!x)return;
if(x->t)ans[x->t]=true;
else{int M=L+R>>;
query(lson);query(rson);
}return;
}
inline int read(){
int x=,sig=;char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-')sig=;
for(;isdigit(ch);ch=getchar())x=*x+ch-'';
return sig?x:-x;
}
inline void write(int x){
if(x==){putchar('');return;}if(x<)putchar('-'),x=-x;
int len=,buf[];while(x)buf[len++]=x%,x/=;
for(int i=len-;i>=;i--)putchar(buf[i]+'');return;
}
void init(){
n=read();read();build();int x,y;
for(int i=;i<=n;i++)x=num[i<<]=read(),y=num[(i<<)|]=read(),d[i]=(data){x,y};
sort(num+,num+n*+);int L=unique(num+,num+n*+)-num;
for(int i=;i<=n;i++){
ql=upper_bound(num+,num+L,d[i].L)-num-;
qr=upper_bound(num+,num+L,d[i].R)-num-;//attention
cv=i;update();
}query();int res=;
for(int i=;i<=(n<<);i++)if(ans[i])res++;write(res);
return;
}
void work(){
return;
}
void print(){
return;
}
int main(){init();work();print();return ;}
hiho #1079 : 离散化的更多相关文章
- poj 2528 Mayor's posters 线段树+离散化 || hihocode #1079 离散化
Mayor's posters Description The citizens of Bytetown, AB, could not stand that the candidates in the ...
- hihoCoder - 1079 - 离散化 (线段树 + 离散化)
#1079 : 离散化 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描写叙述 小Hi和小Ho在回国之后,又一次过起了朝7晚5的学生生活.当然了.他们还是在一直学习着各种算法 ...
- Hihocoder 1079 离散化
离散化这里有很多种方式 利用结构体记录最初的索引在按位置排序再记录排名即为离散的位置再按索引排回来 或者用数组记录排序后直接对原位置二分直接去找离散应在的位置 或者对数组排序后直接map 3 20 1 ...
- hihoCoder #1079 : 离散化 (线段树,数据离散化)
题意:有一块宣传栏,高一定,给出长度,再给出多张海报的张贴位置,问还能见到几张海报(哪怕有一点被看到)?假设海报的高于宣传栏同高. 思路:问题转成“给出x轴上长为L的一条线段,再用n条线段进行覆盖上去 ...
- hiho一下21周 线段树的区间修改 离散化
离散化 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho在回国之后,重新过起了朝7晚5的学生生活,当然了,他们还是在一直学习着各种算法~ 这天小Hi和小Ho ...
- hihoCoder:#1079(线段树+离散化)
题目大意:给n个区间,有的区间可能覆盖掉其他区间,问没有完全被其他区间覆盖的区间有几个?区间依次给出,如果有两个区间完全一样,则视为后面的覆盖前面的. 题目分析:区间可能很长,所以要将其离散化.但离散 ...
- hihoCoder#1079(线段树+坐标离散化)
时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho在回国之后,重新过起了朝7晚5的学生生活,当然了,他们还是在一直学习着各种算法~ 这天小Hi和小Ho所在的学 ...
- hiho 分冶专题
hiho的每周一题都不会很难,基本上就是一些很裸和经典的问题,这一次写了几道分冶专题的题,做个总结. 分冶最简单的就是二分,二分说简单,很简单,不过7,8行代码,不过也常常写挂,写成无限循环. 直接看 ...
- hihocoder-1079题解(线段树+离散化)
一.题目链接 http://hihocoder.com/problemset/problem/1079 二.题意 给定一个长度为L的区间,给你n个子区间,没一个区间涂成一种颜色,问最后这个区间内有几种 ...
随机推荐
- [转]Android NDK几点回调方式
一.NDK中获取android设备ID的方式 Java代码如下(获取设备ANDROID_ID): final String androidId = Secure.getString(context.g ...
- notification.setLatestEventInfo(context, title, message, pendingIntent); undefined
notification.setLatestEventInfo(context, title, message, pendingIntent); 在target为23时删除了该方法,我们应该使用 ...
- Java——(十)网络编程
------Java培训.Android培训.iOS培训..Net培训.期待与您交流! ------- 一.Java的基本网络支持 Java为网络支持提供了java.net包,该包下的URL和URLC ...
- javascript新的原生态API
以下是最新的w3c标准的javascript,目前支持运行在firefox, chrome,IE9以上版本的浏览器 参考资料:https://developer.mozilla.org/ru/docs ...
- Codeforces 552E - Vanya and Brackets【表达式求值】
给一个只有加号和乘号的表达式,要求添加一对括号使得最后结果最大.表达式长度5000,乘号最多12个,表达式中数字只有1位. 左括号一定在乘号右边,右括号一定在乘号左边,因为如果不是这样的话,一定可以调 ...
- sql -以零作除数
将表达式改为: case when b=0 then 0 else a/b end
- [转帖]vivado & VS2013工具
来源:http://bbs.csdn.net/topics/380057699 添加OpenCV库后,MFC在Debug模式下调试,提示应用程序无法正常启动(0xc000007b). 解决方法:在环境 ...
- Intellij Idea 13 vmoptions (Mac版本)
-ea -server -Xms1g -Xmx1g -Xss16m -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+DoEscapeAnalysis -XX:+ ...
- Oracle分区表学习
(1) 表空间及分区表的概念表空间: 是一个或多个数据文件的集合,所有的数据对象都存放在指定的表空间中,但主要存放的是表, 所以称作表空间.分区表: 当表中的数据量不断增大,查询数据的速度就会变慢,应 ...
- 最简单的基于FFmpeg的推流器(以推送RTMP为例)
===================================================== 最简单的基于FFmpeg的推流器系列文章列表: <最简单的基于FFmpeg的推流器(以 ...