【POJ1330】Nearest Common Ancestors(树链剖分求LCA)
Description
A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.
Write a program that finds the nearest common ancestor of two distinct nodes in a tree.
Input
The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.Output
Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.Sample Input
2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5Sample Output
4
3
【题意】
就是求两个点的最近公共祖先。 【分析】
这题可以用倍增做,这次我用了树剖,感觉还挺好打的,嗯嗯...
感觉是因为不可能跳两条重链都越过LCA,因为一个点向下只连一条重边。所以每次调dep较大的边跳就好了。
int LCA(int a, int b)
{
while (1)
{
if(top[a]==top[b]) return dep[a]<=dep[b]?a:b;
else if(dep[top[a]]>=dep[top[b]]) a=fa[top[a]];
else b=fa[top[b]];
}
}
就是这样。
感觉是因为不可能跳两条边都越过LCA的,因为一个点向下只连着一条重边,所以我们每次选短的那一条跳就好了。
http://www.xuebuyuan.com/552070.html
这里有详细证明^^^
代码如下:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 10010
#define INF 100000000 int fa[Maxn],first[Maxn],size[Maxn],dep[Maxn],son[Maxn];
int w[Maxn],top[Maxn];int wl;
bool q[Maxn]; struct node
{
int x,y,next;
}t[*Maxn];int len; int mymax(int x,int y) {return x>y?x:y;}
int mymin(int x,int y) {return x<y?x:y;} void ins(int x,int y)
{
t[++len].x=x;t[len].y=y;
t[len].next=first[x];first[x]=len;
} void dfs1(int x,int f)
{
fa[x]=f;dep[x]=dep[f]+;size[x]=;
son[x]=;
for(int i=first[x];i;i=t[i].next) if(t[i].y!=f)
{
dfs1(t[i].y,x);
size[x]+=size[t[i].y];
if(size[t[i].y]>size[son[x]]) son[x]=t[i].y;
}
} void dfs2(int x,int tp)
{
w[x]=++wl;
top[x]=tp;
if(size[x]!=) dfs2(son[x],tp);
for(int i=first[x];i;i=t[i].next) if(t[i].y!=fa[x]&&t[i].y!=son[x])
{
dfs2(t[i].y,t[i].y);
}
} int LCA(int a, int b)
{
while ()
{
if(top[a]==top[b]) return dep[a]<=dep[b]?a:b;
else if(dep[top[a]]>=dep[top[b]]) a=fa[top[a]];
else b=fa[top[b]];
}
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n;
scanf("%d",&n);
memset(first,,sizeof(first));
memset(q,,sizeof(q));
len=;
for(int i=;i<n;i++)
{
int x,y,c;
scanf("%d%d",&x,&y);
q[y]=;
ins(x,y);//ins(y,x);
}
int root;
for(int i=;i<=n;i++) if(!q[i]) root=i;
dep[]=;size[]=;
dfs1(root,);wl=;
dfs2(root,);
int x,y;
scanf("%d%d",&x,&y);
printf("%d\n",LCA(x,y));
}
return ;
}
[POJ1330]
2016-05-08 17:13:07
【POJ1330】Nearest Common Ancestors(树链剖分求LCA)的更多相关文章
- 树链剖分求LCA
树链剖分中各种数组的作用: siz[]数组,用来保存以x为根的子树节点个数 top[]数组,用来保存当前节点的所在链的顶端节点 son[]数组,用来保存重儿子 dep[]数组,用来保存当前节点的深度 ...
- cogs 2450. 距离 树链剖分求LCA最近公共祖先 快速求树上两点距离 详细讲解 带注释!
2450. 距离 ★★ 输入文件:distance.in 输出文件:distance.out 简单对比时间限制:1 s 内存限制:256 MB [题目描述] 在一个村子里有N个房子,一 ...
- cogs 2109. [NOIP 2015] 运输计划 提高组Day2T3 树链剖分求LCA 二分答案 差分
2109. [NOIP 2015] 运输计划 ★★★☆ 输入文件:transport.in 输出文件:transport.out 简单对比时间限制:3 s 内存限制:256 MB [题 ...
- HDU2586 How far away ? (树链剖分求LCA)
用树链剖分求LCA的模板: 1 #include<iostream> 2 #include<algorithm> 3 using namespace std; 4 const ...
- 【树链剖分】洛谷P3379 树链剖分求LCA
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...
- 【模板】树链剖分求LCA
洛谷3379 #include<cstdio> #include<algorithm> using namespace std; ,inf=1e9; int n,m,x,y,r ...
- Hdu 2586 树链剖分求LCA
Code: #include<cstdio> #include<cstring> #include<vector> #include<algorithm> ...
- POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)
POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...
- Luogu 2680 NOIP 2015 运输计划(树链剖分,LCA,树状数组,树的重心,二分,差分)
Luogu 2680 NOIP 2015 运输计划(树链剖分,LCA,树状数组,树的重心,二分,差分) Description L 国有 n 个星球,还有 n-1 条双向航道,每条航道建立在两个星球之 ...
随机推荐
- 模板类之间的友元关系实现Blob和BlobPtr
16.12编写你自己版本的Blob和BlobPtr模板,包含书中未定义的多个const成员. Blob.h(注意,成员函数的声明和定义要放在一个头文件中) /*记住,模板的头文件中通常既包括声明也包括 ...
- Gstreamer 数据流线程(GstTask / GstTaskPool)分析
作者:fengcc 原创文章 转载请注明出处 GStreamer 是一个基于流水线的多媒体框架,基于 GObject,以 C 语言写成. 凭借 GStreamer,程序员可以很容易地创建各种多媒体功能 ...
- MySQL查询
DQL 操作 DQL 数据查询语言(重要) 数据库执行DQL语句不会对数据做出任何改变,而是让数据库发送结果集给客户端. 查询返回的结果是一张虚拟表. 查询关键字:SELECT ...
- GUI编程笔记(java)09:GUI控制文本框只能输入数字字符案例
1.首先我们看看我的需求,如下: 控制文本框只能输入数字字符 2.源代码: package cn.itcast_07; import java.awt.FlowLayout; import jav ...
- linux+apache+mod_Jk+tomcat实现tomcat集群
最近一段时间一直在研究实现apache + jk_mod + tomcat实现负载均衡,起初负载均衡算是配置蛮顺利的,但是到了配置tomcat集群时所有配置都没有问题,但是tomcat日志中一直提示没 ...
- asp.net pagebase获取缓存的方法
public string GetSysConfigByKey(string key) { if (object.Equals(HttpContext.Current.Cache["Cach ...
- PL/SQL Developer 远程连接Oracle数据库
PL/SQL Developer 远程连接Oracle数据库 网上搜了很多方法,这个可行! 1. 配置服务器tnsnames.ora文件,如果本机上没有安装oracle,可以从安装了oracle ...
- js--小结②
- 微信公众平台开发(一)——接入指南(asp.net)
第一步:申请消息接口 在公众平台网站的高级功能 – 开发模式页,点击“成为开发者”按钮,填写URL和Token,其中URL是开发者用来接收微信服务器数据的接口URL.Token可由开发者任意填写,用作 ...
- 邓白氏编码(duns number)申请入口的路径-苹果开发者申请必
http://tieba.baidu.com/p/3861287522 这个网址有详细的介绍