折腾了很久,终于运行成功。

才云科技的书不错,就是需要微调一二。

心得:1,记得activate tensorflow,然后再python

2,Python的代码格式很重要,不要错误。

3,还不清楚如何不跳出去就能用tensorflow的方法。

---------

from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 OUTPUT_NODE = 10 LAYER1_NODE = 500 BATCH_SIZE = 100 LEARNING_RATE_BASE = 0.8 LEARNING_RATE_DECAY = 0.99 REGULARIZATION_RATE = 0.001 TRAINING_STEPS = 30000 MOVING_AVERAGE_DECAY = 0.99 FLAGS=None

def inference(input_tensor,avg_class,weights1,biases1,weights2,biases2):     if avg_class == None:         layer1=tf.nn.relu(tf.matmul(input_tensor,weights1)+biases1)         return tf.matmul(layer1,weights2)+biases2     else:         layer1 = tf.nn.relu(             tf.matmul(input_tensor,avg_class.average(weights1))+avg_class.average(biases1))         return tf.matmul(layer1,avg_class.average(weights2))+avg_class.average(biases2)

def main(_):     mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)     x = tf.placeholder(tf.float32,[None,INPUT_NODE],name='x-input')     y_= tf.placeholder(tf.float32,[None,OUTPUT_NODE],name='y-input')     weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE,LAYER1_NODE],stddev=0.1))     biases1 = tf.Variable(tf.constant(0.1,shape=[LAYER1_NODE]))     weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE,OUTPUT_NODE],stddev=0.1))     biases2 = tf.Variable(tf.constant(0.1,shape=[OUTPUT_NODE]))     y=inference(x,None,weights1,biases1,weights2,biases2)     global_step =tf.Variable(0,trainable=False)     variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY,global_step)     variables_averages_op = variable_averages.apply(tf.trainable_variables())     average_y = inference(x,variable_averages,weights1,biases1,weights2,biases2)     cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_,1))     cross_entropy_mean = tf.reduce_mean(cross_entropy)     regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)     regularization=regularizer(weights1)+regularizer(weights2)     loss = cross_entropy_mean + regularization     learning_rate = tf.train.exponential_decay(         LEARNING_RATE_BASE,global_step,mnist.train.num_examples/BATCH_SIZE,LEARNING_RATE_DECAY)     train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss,global_step=global_step)     with tf.control_dependencies([train_step,variables_averages_op]):         train_op=tf.no_op(name='train')     correct_prediction = tf.equal(tf.argmax(average_y,1),tf.argmax(y_,1))     accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))     with tf.Session() as sess:         tf.global_variables_initializer().run()         validate_feed = {x:mnist.validation.images,y_:mnist.validation.labels}         test_feed = {x:mnist.test.images,y_:mnist.test.labels}         for i in range(TRAINING_STEPS):             if i % 1000 == 0:                 validate_acc = sess.run(accuracy,feed_dict = validate_feed)                 print("After %d training steps,validation accuracy " "using average model is %g" % (i, validate_acc))             xs,ys = mnist.train.next_batch(BATCH_SIZE)             sess.run(train_op,feed_dict = {x:xs,y_:ys})         test_acc = sess.run(accuracy,feed_dict=test_feed)         print("After %d training steps,test accuracy using average model is %g" % (TRAINING_STEPS,test_acc))

if __name__ == '__main__':     parser = argparse.ArgumentParser()     parser.add_argument('--data_dir', type=str, default='/tmp/tensorflow/mnist/input_data',                       help='Directory for storing input data')     FLAGS, unparsed = parser.parse_known_args()     tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)

tensorFlow可以运行的代码的更多相关文章

  1. 尝试在tensorflow上运行facenet

    上一篇装好了tensorflow的运行环境,开始尝试运行一些实例代码,在github上找到了一个tensorflow实现的facenet的代码,还是遇到了很多坑! 坚持看完,有重要总结! 代码:htt ...

  2. docker之配置TensorFlow的运行环境

    Docker是一种 操作系统层面的虚拟化技术,类似于传统的虚拟机.传统虚拟机技术是虚拟出一套硬件后,在其上运行一个完整操作系统,在该系统上再运行所需应用进程:而容器内的应用进程直接运行于宿主的内核,容 ...

  3. 运行html代码

    <html> <head> <meta http-equiv="Content-Type" content="text/html; char ...

  4. 让dede运行php代码和mysql语句

    一.dede运行php代码 举例1: {dede:name runphp='yes'} $str = "hello ";@me = $str;@me .= "world& ...

  5. 如何将oc代码转换成运行时代码

    // 运行时 其实就是oc的底层  平时写的代码 最终都是转成底层的运行时代码以下面程序为例子: 如果我们想要看我们的main.m文件底层转换成了怎样的运行时代码 ,我们可以这样做. 1.打开终端  ...

  6. 掌握GCD以及后台永久运行的代码 (使用GCD处理后台线程和UI线程的交互)

    一个例子: 在iPhone上做一个下载网页的功能,就是:在iPhone上放一个按钮,单击按钮时,显示一个转动的圆圈,表示正在进行下载,下载完成后,将内容加载到界面上的一个文本控件上. 使用GCD前: ...

  7. 在线运行HTML代码器

    在线运行HTML代码器(二)和前面的(一)大同小异,关键部分为JS代码,这次是把运行器所有的JS功能集中放在一起.以下为HTML代码: <!DOCTYPE html PUBLIC "- ...

  8. 《Secrets of the JavaScript Ninja》:JavaScript 之运行时代码

    最近,在阅读 jQuery 之父 John Resig 力作:Secrets of the JavaScript Ninja(JavaScript忍者秘籍).关于第九章提及的 JavaScript 之 ...

  9. Sublime_text3怎么运行php代码

    开发神奇sublime写代码真的好爽,之前听说是神器,但是没去用,觉得用eclipse写php代码,用dw写html够用了,用了一下sublime,哈哈,爽爆了. 除了写前端代码外,还需要写php代码 ...

随机推荐

  1. Java并发编程的挑战

    并发编程的目的是为了让程序运行得更快,但是,并不是线程启动的越多,就能让程序最大限度地并发执行.并发编程时,会面临非常多的挑战,比如上下文切换的问题,死锁的问题,以及受限于各种硬件和软件的资源限制问题 ...

  2. layui

    给大家推荐个比较好用的前端ui框架layui,遵循原生HTML/CSS/JS的书写与组织形式,门槛极低,拿来即用,而且layui除了ie6/7不兼容其他都兼容,而且还是响应式布局 1,获得layui后 ...

  3. 在阿里云开源镜像站中下载centOS7

    镜像的选择 第一步.下载镜像 阿里云开源镜像站:http://mirrors.aliyun.com/ 选择centos进入 如下图: 如下图:选择centos7 再选择isos(镜像目录) 继续下一步 ...

  4. docker 中安装 redis

    使用以下命令在Docker Hub搜索Redis镜像docker search redis 使用以下命令拉取镜像,Redis的镜像docker pull redis:latest 使用以下命令查看,本 ...

  5. 可编程并行接口8255A详解

  6. mac 中git操作账号的保存与删除

    保存: 在mac中自动保存git的用户名和密码很简单,只需要在终端命令行中输入下面的命令就是: git config --global credential.helper osxkeychain 然后 ...

  7. java中JScrollPane不显示水平滚动条的解决办法

    在JPanel中添加了表格,表格中对东西太多,需要水平滚动条滑动才能够完全找到所有数据,如果没有水平滚动条的话,数据堆积在一起,无法分开 做法是: 第一步:先将表格自动调整的状态给关闭掉:table. ...

  8. MACE移植要求

    MACE支持Tensorflow的depth_to_space和space_to_depth,以及strided_slice算子. 其中depth_to_space可以用来无平滑地进行上采样. spa ...

  9. C语言实现过滤ASCII在0~127范围内的字符,并去除重复的字符

    #include <stdio.h> #include <string.h> /* 1.以字符串作为参数 2.找出ASCII在1~127范围内的字符 3.去掉重复字符 */ i ...

  10. 【问题记录】使用FreeMarker生成数据,模板明明没错却一直报错“The following has evaluated to null or missing:”

    今天使用FreeMarker生成数据时一直报错,错误信息是“The following has evaluated to null or missing:”,告知我找不到值. 但是我再三确认,这些属性 ...