matlab练习程序(对应点集配准的四元数法)
这个算是ICP算法中的一个关键步骤,单独拿出来看一下。
算法流程如下:
1.首先得到同名点集P和X。
2.计算P和X的均值up和ux。
3.由P和X构造协方差矩阵sigma。
4.由协方差矩阵sigma构造4*4对称矩阵Q。
5.计算Q的特征值与特征向量。其中Q最大特征值对应的特征向量即为最佳旋转向量q。
6.通过四元数q得到旋转矩阵R。
7.根据R计算最佳平移向量qr。
具体公式我就不贴图了,可以参考这篇“ICP算法在点云配准中的应用”论文的3.1节。
处理效果如下:
原始点集:
其中蓝点为原始点集,红点为旋转平移后的点集。
配准后点集:
计算得到的旋转平移矩阵,通过对蓝点集进行转换得到绿点集,比较红点集与绿点集是否基本一致。
matlab代码如下:
clear all;
close all;
clc; %生成原始点集
X=[];Y=[];Z=[];
for i=-180:2:180
for j=-90:2:90
x = i * pi / 180.0;
y = j * pi / 180.0;
X =[X,cos(y) * cos(x)];
Y =[Y,sin(y) * cos(x)];
Z =[Z,sin(x)];
end
end
P=[X(1:3000)' Y(1:3000)' Z(1:3000)']; %生成变换后点集
i=0.5;j=0.3;k=0.7;
Rx=[1 0 0;0 cos(i) -sin(i); 0 sin(i) cos(i)];
Ry=[cos(j) 0 sin(j);0 1 0;-sin(j) 0 cos(j)];
Rz=[cos(k) -sin(k) 0;sin(k) cos(k) 0;0 0 1];
R=Rx*Ry*Rz;
X=P*R + [0.2,0.3,0.4]; plot3(P(:,1),P(:,2),P(:,3),'b.');
hold on;
plot3(X(:,1),X(:,2),X(:,3),'r.'); %计算点集均值
up = mean(P);
ux = mean(X); P1=P-up;
X1=X-ux; %计算点集协方差
sigma=P1'*X1/(length(X1));
sigma_mi = sigma - sigma';
M=sigma+sigma'-trace(sigma)*[1,0,0;0,1,0;0,0,1]; %由协方差构造4*4对称矩阵
Q=[trace(sigma) sigma_mi(2,3) sigma_mi(3,1) sigma_mi(1,2);
sigma_mi(2,3) M(1,1) M(1,2) M(1,3);
sigma_mi(3,1) M(2,1) M(2,2) M(2,3);
sigma_mi(1,2) M(3,1) M(3,2) M(3,3)]; %计算特征值与特征向量
[x,y] = eig(Q);
e = diag(y); %计算最大特征值对应的特征向量
lamda=max(e);
for i=1:length(Q)
if lamda==e(i)
break;
end
end
q=x(:,i); q0=q(1);q1=q(2);q2=q(3);q3=q(4); %由四元数构造旋转矩阵
RR=[q0^2+q1^2-q2^2-q3^2 ,2*(q1*q2-q0*q3), 2*(q1*q3+q0*q2);
2*(q1*q2+q0*q3), q0^2-q1^2+q2^2-q3^2, 2*(q2*q3-q0*q1);
2*(q1*q3-q0*q2), 2*(q2*q3+q0*q1), q0^2-q1^2-q2^2+q3^2]; %计算平移向量
qr=ux-up*RR'; %验证旋转矩阵与平移向量正确性
Pre = P*RR'+qr; figure;
plot3(P(:,1),P(:,2),P(:,3),'b.');
hold on;
plot3(X(:,1),X(:,2),X(:,3),'r.'); plot3(Pre(:,1),Pre(:,2),Pre(:,3),'go');
关注公众号: MATLAB基于模型的设计 (ID:xaxymaker) ,每天推送MATLAB学习最常见的问题,每天进步一点点,业精于勤荒于嬉。
打开微信扫一扫哦!
matlab练习程序(对应点集配准的四元数法)的更多相关文章
- matlab练习程序(点集配准的SVD法)
上一篇博客中我们使用了四元数法计算ICP. 本篇我们使用SVD计算ICP. 下面是<视觉slam十四讲>中的计算方法: 计算步骤如下: 我们看到,只要求出了两组点之间的旋转,平移是非常容易 ...
- matlab练习程序(SUSAN检测)
matlab练习程序(SUSAN检测) SUSAN算子既可以检测角点也可以检测边缘,不过角点似乎比不过harris,边缘似乎比不过Canny.不过思想还是有点意思的. 主要思想就是:首先做一个和原图像 ...
- (转)matlab练习程序(HOG方向梯度直方图)
matlab练习程序(HOG方向梯度直方图)http://www.cnblogs.com/tiandsp/archive/2013/05/24/3097503.html HOG(Histogram o ...
- 点集配准技术(ICP、RPM、KC、CPD)
在计算机视觉和模式识别中,点集配准技术是查找将两个点集对齐的空间变换过程.寻找这种变换的目的主要包括:1.将多个数据集合并为一个全局统一的模型:2.将未知的数据集映射到已知的数据集上以识别其特征或估计 ...
- matlab练习程序(旋转矩阵、欧拉角、四元数互转)
欧拉角转旋转矩阵公式: 旋转矩阵转欧拉角公式: 旋转矩阵转四元数公式,其中1+r11+r22+r33>0: 四元数转旋转矩阵公式,q0^2+q1^2+q2^2+q3^2=1: 欧拉角转四元数公式 ...
- matlab练习程序(求向量间的旋转矩阵与四元数)
问题是这样,如果我们知道两个向量v1和v2,计算从v1转到v2的旋转矩阵和四元数,由于旋转矩阵和四元数可以互转,所以我们先计算四元数. 我们可以认为v1绕着向量u旋转θ角度到v2,u垂直于v1-v2 ...
- matlab示例程序--Motion-Based Multiple Object Tracking--卡尔曼多目标跟踪程序--解读
静止背景下的卡尔曼多目标跟踪 最近学习了一下多目标跟踪,看了看MathWorks的关于Motion-Based Multiple Object Tracking的Documention. 官网链接:h ...
- matlab练习程序(透视投影,把lena贴到billboard上)
本练习程序是受到了这个老外博文的启发,感觉挺有意思,就尝试了一下.他用的是opencv,我这里用的是matlab. 过去写过透视投影,当时是用来做倾斜校正的,这次同样用到了透视投影,不过更有意思,是将 ...
- matlab练习程序(多圆交点)
最近总是对计算几何方面的程序比较感兴趣. 多圆求交点,要先对圆两两求交点. 有交点的圆分为相切圆和相交圆. 相切圆求法: 1.根据两圆心求直线 2.求公共弦直线方程 3.求两直线交点即两圆切点. 相交 ...
随机推荐
- [Swift]LeetCode254.因子组合 $ Factor Combinations
Numbers can be regarded as product of its factors. For example, 8 = 2 x 2 x 2; = 2 x 4. Write a func ...
- [Swift]LeetCode935. 骑士拨号器 | Knight Dialer
A chess knight can move as indicated in the chess diagram below: . This time, we place o ...
- ThinkPHP 数据库操作(五) : 存储过程、数据集、分布式数据库
存储过程 5.0支持存储过程,如果我们定义了一个数据库存储过程 sp_query ,可以使用下面的方式调用: $result = Db::query('call sp_query(8)'); 返回的是 ...
- Java连接数据库之SQLServer
工具: eclipse Microsoft SQL Server SQL Server连接驱动:mssql-jdbc-6.4.0.jre8.jar SQL script代码 CREATE DATABA ...
- centos7中安装、配置、验证、卸载redis
本文介绍在centos7中安装.配置.验证.卸载redis等操作,以及在使用redis中的一些注意事项. 一 安装redis 1 创建redis的安装目录 利用以下命令,切换到/usr/local路径 ...
- AttributeError: module 'pip' has no attribute 'main'
Pycharm在运行pip安装模块是报错如下: 解决方法: 找到安装路径下的packaging_tool.py文件修改如下: 我的路径为D:\Program Files\JetBrains\PyCha ...
- TP3.2框架中的字母函数解析
C的使用方法以及注意事项 使用方法: 1.读取配置 C('参数名称') 配置参数不区分大小写,存在则设置,否则返回NULL; 因为配置参数是全局有效的,因此C方法可以在任何地方读取任何配置,即使某个 ...
- Ocelot中使用Butterfly实践
Ocelot(https://github.com/TomPallister/Ocelot)是一个用.net core实现的API网关,Butterfly(https://github.com/But ...
- 面试小知识:MySQL索引相关
前言 本模板主要是一些面试相关的题目,对于每一道问题,我会提供简单的解答,答案的来源主要是基于自己看了各方资料之后的理解,如果有错的,欢迎指点出来. 1. 什么是最左前缀原则? 以下回答全部是基于My ...
- Python的协程
什么是协程 协程又叫做微线程,它是在单一线程内通过不断切换执行的.协程的切换不是上下文的切换也就是说不是CPU的执行任务的切换,比如CPU执行一会线程1,然后再执行一会线程2,在多核CPU上,Pyth ...