手写数字识别 ----Softmax回归模型官方案例注释(基于Tensorflow,Python)
# 手写数字识别 ----Softmax回归模型
# regression
import os
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
data = input_data.read_data_sets("/tmp/data/", one_hot=True) # 获取数据 mnist是一个轻量级的类,其中以Numpy数组的形式中存储着训练集、验证集、测试集。 # 一个对手写数字进行识别的模型。
# 思路:
# 1、将训练集中获取的手写数字图像进行某一统一方式(全部按行或全部按列)的展开,
# 得到一个长向量(这是为了利用softmax做一维的回归,不过损失了二维信息),
# 用一个二维张量来索引某一个样本中的某一像素。
# 2、softmax模型:用来给不同的对象分配概率(即使在更精细的模型中,最后一步,往往也需要用softmax来分配概率)
# 两步:
# ① 加权求和,并引入偏置
# 对于给定输入图片x,其代表图像为数字i的证据为
# evidencei =∑i(wi, jxj) + bi
# evidence_i =∑_i(w_{i, j}x_j)+b_ievidencei=∑i(wi, jxj) + bi
# ② 用softmax函数将evidence转换成概率,即
# y = softmax(evidence)
# y = softmax(evidence)
# y = softmax(evidence)
# 将输入值当成幂指数求值,再正则化这些结果
# 更紧凑的写法为
# y = softmax(Wx + b)
# y = softmax(Wx + b)
# y = softmax(Wx + b)
# 3、为了节省在python外使用别的语言进行复杂矩阵运算带来的开销,TensorFlow做出的优化为,先用图描述一系列可交互的操作,最后统一放在python外执行。
# 用占位符placeholder来描述这些可交互的单元:
# ---------------------
# 作者:Crystal
# 来源:CSDN
# 原文:https: // blog.csdn.net / weixin_43226400 / article / details / 82749769
# 版权声明:本文为博主原创文章,转载请附上博文链接! #http://www.cnblogs.com/rgvb178/p/6052541.html 相关说明
# Softmax Regression Model Softmax回归模型
def regression(x):
W = tf.Variable(tf.zeros([784, 10]), name="W")
b = tf.Variable(tf.zeros([10]), name="b")
y = tf.nn.softmax(tf.matmul(x, W) + b)
# print(y)
return y, [W, b] # model 声明占位符
with tf.variable_scope("regression"):
x = tf.placeholder(tf.float32, [None, 784])
y, variables = regression(x) # 用交叉熵(cross - entropy)来评判模型的好坏,其表达式为
# Hy′(y) =−∑iy′ilog(yi)
# 其中y是预测的概率分布,y’是实际的概率分布(即训练集对应的真实标签,是一个one - hotvector)定义 # train 开始训练模型
y_ = tf.placeholder("float", [None, 10])
# 计算交叉熵
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
# tensorflow可以自动利用反向传播算法,根据选择的优化器来最小化你的目标函数
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
# tf.argmax给出对象在某一维度上最大值所对应的索引值,可以用来判断预测是否准确,即
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
# equal函数返回布尔值,用cast函数转化为浮点数后求均值来计算正确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) saver = tf.train.Saver(variables)
with tf.Session() as sess:
# 初始化操作
sess.run(tf.global_variables_initializer())
for _ in range(10000):
batch_xs, batch_ys = data.train.next_batch(100)
# 此为随机梯度下降训练,每次训练随机抓取训练集中的100个数据作为一个batch
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) # 计算学习到的模型在训练集上的准确率
print(sess.run(accuracy, feed_dict={x: data.test.images, y_: data.test.labels})) # 保存训练结果
# print(os.path.join(os.path.dirname(__file__), 'data', 'regression.ckpt'))
# //绝对路径包含中文字符可能导致路径不可用 相对路径:'mnist/data/regression.ckpt'
path = saver.save(
sess, 'mnist/data/regression.ckpt',
write_meta_graph=False, write_state=False)
print("Saved:", path) # path = saver.save(
# sess, os.path.join(os.path.dirname(__file__), 'mnist\data', 'regression.ckpt'),write_meta_graph=False, write_state=False)
# print("Saved:", path) write_meta_graph=False, write_state=False)
print("Saved:", path) # path = saver.save(
# sess, os.path.join(os.path.dirname(__file__), 'mnist\data', 'regression.ckpt'),write_meta_graph=False, write_state=False)
# print("Saved:", path)
手写数字识别 ----Softmax回归模型官方案例注释(基于Tensorflow,Python)的更多相关文章
- 手写数字识别 ----卷积神经网络模型官方案例注释(基于Tensorflow,Python)
# 手写数字识别 ----卷积神经网络模型 import os import tensorflow as tf #部分注释来源于 # http://www.cnblogs.com/rgvb178/p/ ...
- mnist手写数字识别(Logistic回归)
import numpy as np from sklearn.neural_network import MLPClassifier from sklearn.linear_model import ...
- CNN:人工智能之神经网络算法进阶优化,六种不同优化算法实现手写数字识别逐步提高,应用案例自动驾驶之捕捉并识别周围车牌号—Jason niu
import mnist_loader from network3 import Network from network3 import ConvPoolLayer, FullyConnectedL ...
- 手写数字识别 ----在已经训练好的数据上根据28*28的图片获取识别概率(基于Tensorflow,Python)
通过: 手写数字识别 ----卷积神经网络模型官方案例详解(基于Tensorflow,Python) 手写数字识别 ----Softmax回归模型官方案例详解(基于Tensorflow,Pytho ...
- 基于Numpy的神经网络+手写数字识别
基于Numpy的神经网络+手写数字识别 本文代码来自Tariq Rashid所著<Python神经网络编程> 代码分为三个部分,框架如下所示: # neural network class ...
- Softmax用于手写数字识别(Tensorflow实现)-个人理解
softmax函数的作用 对于分类方面,softmax函数的作用是从样本值计算得到该样本属于各个类别的概率大小.例如手写数字识别,softmax模型从给定的手写体图片像素值得出这张图片为数字0~9 ...
- 【百度飞桨】手写数字识别模型部署Paddle Inference
从完成一个简单的『手写数字识别任务』开始,快速了解飞桨框架 API 的使用方法. 模型开发 『手写数字识别』是深度学习里的 Hello World 任务,用于对 0 ~ 9 的十类数字进行分类,即输入 ...
- 使用L2正则化和平均滑动模型的LeNet-5MNIST手写数字识别模型
使用L2正则化和平均滑动模型的LeNet-5MNIST手写数字识别模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献Tensorflow实战Google深度学习框架 实验平台: T ...
- 持久化的基于L2正则化和平均滑动模型的MNIST手写数字识别模型
持久化的基于L2正则化和平均滑动模型的MNIST手写数字识别模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献Tensorflow实战Google深度学习框架 实验平台: Tens ...
随机推荐
- 史上最简单的Docker入门教程
安装Ubuntu Docker 安装 CentOS Docker 安装 Windows Docker 安装 MacOS Docker 安装 这里我的电脑是mac,采用brew安装,安装完毕记得更换国内 ...
- 自定义shiro实现权限验证方法isAccessAllowed
由于Shiro filterChainDefinitions中 roles默认是and, admin= user,roles[system,general] 比如:roles[system,gener ...
- 第三节:Windows平台部署Asp.Net Core应用(基于IIS和Windows服务两种模式)
一. 简介 二. 文件系统发布至IIS 三. Web部署发布至IIS 四. FTP发布至IIS 五. Windows服务的形式发布 ! 作 者 : Yaopengfei(姚鹏飞) 博客地址 ...
- EffectiveC++笔记 目录
Charpter 1. 让自己习惯C++ 条款01: 视C++为一个语言联邦 条款02: 尽量以const,enum,inline替换#define 条款03: 尽可能使用const 条款04: ...
- 20155324王鸣宇 《网络对抗技术》Web基础
20155324王鸣宇 <网络对抗技术>Web基础 实践要求 ①Web前端HTML: 能正常安装.启停Apache.理解HTML,理解表单,理解GET与POST方法,编写一个含有表单的HT ...
- 在Ubuntu下进行XMR Monero(门罗币)挖矿的超详细图文教程
大家都知道,最近挖矿什么的非常流行,于是我也在网上看了一些大神写的教程,以及跟一些大神请教过如何挖矿,但是网上的教程都感觉写得不够详细,于是今天我这里整理一个教程,希望能够帮到想要挖矿的朋友. 首先, ...
- ubuntu工作常用命令及需要留意的点汇总
这段时间比较忙,先是去北京出差一段时间,然后是福建项目部署上线,领导不愿意招人,只苦了我们下面的人,今天得空,简单汇总下ubuntu服务器部署的常用命令,及日常学习使用感受: 0.书籍买的<循序 ...
- shell 脚本实现定时备份mysql数据库
首先要知道直接在脚本中输入mysql的密码是不被允许的,但是我们可以曲线救国 1. 在新建一个文件专门用来存储用户密码 如: vim ./.mysql.conf [mysqldump] user=yo ...
- java 中final关键字
1.final变量,一旦该变量被设定,就不可以再改变该变量的值. final关键字定义的变量必须声明时赋值.一旦一个对象引用被修饰为final后,它只能恒定指向一个对象,一个既是static和fina ...
- HikariCP Druid比较
HikariCP Github地址: https://github.com/brettwooldridge/HikariCP HikariCP是数据库连接池,而且是号称史上最快的, SpringBoo ...