#SVM的使用

(结合具体代码说明,代码参考邹博老师的代码)

1、使用numpy中的loadtxt读入数据文件

data:鸢尾花数据

5.1,3.5,1.4,0.2,Iris-setosa

4.9,3.0,1.4,0.2,Iris-setosa

4.7,3.2,1.3,0.2,Iris-setosa

4.6,3.1,1.5,0.2,Iris-setosa

5.0,3.6,1.4,0.2,Iris-setosa

读取:

:path路径

:dtype读取类型

:delimiter分隔符

:converters- A dictionary mapping column number to a function that will parse the column string into the desired value. E.g., if column 0 is a date string: ``converters = {0: datestr2num}``. Converters can also be used to provide a default value for missing data (but see also genfromtxt): ``converters = {3: lambda s: float(s.strip() or 0)}``.

:Default None.

*data

[[5.1, 3.5, 1.4, 0.2, 0. ], [4.9, 3. , 1.4, 0.2, 0. ], [4.7, 3.2, 1.3, 0.2, 0. ], [4.6, 3.1, 1.5, 0.2, 0. ],[5. , 3.6, 1.4, 0.2, 0. ]]

2、数据分训练测试集

*split用法

def split(ary,indices_or_sections,axis = 0):

'''

Split an array into multiple sub-arrays.

'''

Parameters-------------

ary : ndarray---Array to be divided into sub-arrays.

indices_or_sections---int or 1-D array  If `indices_or_sections` is an integer, N, the array will be divided into N equal arrays along `axis`. If such a split is not possible,

an error is raised.

If `indices_or_sections` is a 1-D array of sorted integers, the entries indicate where along `axis` the array is split. For example,``[2, 3]`` would, for ``axis=0``, result in

ary[:2]

ary[2:3]

ary[3:]

If an index exceeds the dimension of the array along `axis`,an empty sub-array is returned correspondingly.

axis:int,optional---The axis along which to split,default is 0.

0按列分割,1按行分割

Return:sub-array:list of ndarrays

A list of sub-arrays

example:

3、训练SVM

kernel='linear'时,为线性核,C越大分类效果越好,但有可能出现过拟合;

kernel='rbf'时,为高斯核,gamma越小,分类界面越连续;gamma越大,分类界面越分散,分类效果越好(训练集),但是有可能会过拟合。

decision_function_shape='ovr'时(one v rest),即一个类别与其他类别进行划分;

decision_function_shape='ovo'时(one v one),即将类别两两之间进行划分,用二分类的方法模拟多分类的结果。

*准确率计算方式

机器学习--------SVM的更多相关文章

  1. 文本分类学习 (五) 机器学习SVM的前奏-特征提取(卡方检验续集)

    前言: 上一篇比较详细的介绍了卡方检验和卡方分布.这篇我们就实际操刀,找到一些训练集,正所谓纸上得来终觉浅,绝知此事要躬行.然而我在躬行的时候,发现了卡方检验对于文本分类来说应该把公式再变形一般,那样 ...

  2. 机器学习——SVM详解(标准形式,对偶形式,Kernel及Soft Margin)

    (写在前面:机器学习入行快2年了,多多少少用过一些算法,但由于敲公式太过浪费时间,所以一直搁置了开一个机器学习系列的博客.但是现在毕竟是电子化的时代,也不可能每时每刻都带着自己的记事本.如果可以掏出手 ...

  3. 程序员训练机器学习 SVM算法分享

    http://www.csdn.net/article/2012-12-28/2813275-Support-Vector-Machine 摘要:支持向量机(SVM)已经成为一种非常受欢迎的算法.本文 ...

  4. [机器学习]SVM原理

    SVM是机器学习中神一般的存在,虽然自深度学习以来有被拉下神坛的趋势,但不得不说SVM在这个领域有着举足轻重的地位.本文从Hard SVM 到 Dual Hard SVM再引进Kernel Trick ...

  5. [机器学习] SVM——Hinge与Kernel

    Support Vector Machine [学习.内化]--讲出来才是真的听懂了,分享在这里也给后面的小伙伴点帮助. learn from: https://www.youtube.com/wat ...

  6. 小刘的机器学习---SVM

    前言: 这是一篇记录小刘学习机器学习过程的随笔. 正文: 支持向量机(SVM)是一组用于分类, 回归和异常值检测的监督学习方法. 在分类问题中,SVM就是要找到一个同时离各个类别尽可能远的决策边界即最 ...

  7. 机器学习—SVM

    一.原理部分: 依然是图片~ 二.sklearn实现: import pandas as pd import numpy as np import matplotlib.pyplot as plt i ...

  8. 机器学习——SVM讲解

    支持向量机(Support Vector Machine) SVM是一类按监督学习方式对数据进行二元分类的广义线性分类器,决策边界是对学习样本求解的最大边距超平面.只需要知道,SVM是一个有监督的分类 ...

  9. 机器学习——SVM

    整理自: https://blog.csdn.net/woaidapaopao/article/details/77806273?locationnum=9&fps=1 带核的SVM为什么能分 ...

随机推荐

  1. docker方式mysql设置字符集

    在docker上部署mysql时,mysql的默认字符集是latin1,这样如果日后有中文会出现异常,不能存储等,因为latin1是不支持中文的. 所以需要将字符集调整为utf8. 方法: 首先启动m ...

  2. Mysql常用命令大全 sql

    1.连接Mysql 格式: mysql -h主机地址 -u用户名 -p用户密码 1.连接到本机上的MYSQL.首先打开DOS窗口,然后进入目录mysql\bin,再键入命令mysql -u root ...

  3. Image Pipeline

    Image Pipeline Scrapy 提供了专门下载文件或者图片的Pipeline,下载图片与文件的原理同抓取网页的原理是一样的,所以他们的下载过程支持多线程与异步,十分的高效 Image Pi ...

  4. CSS --记录

    CSS3与文字渐变光影流动动画效果实现 by zhangxinxu from http://www.zhangxinxu.com 本文地址:http://www.zhangxinxu.com/word ...

  5. PHP斐波那契数列有点不明白有哪位大佬能给讲讲思想以及实现过程

    function Fibonacci($n){         if($n <= 0) {             return 0;         }elseif($n == 1) {    ...

  6. OpenStack--ntp组件时间同步服务

    作用:ntp主要是用于对计算机的时间同步管理操作 环境: 服务端: 192.168.245.172 客户端: 192.168.245.171 时间是对服务器来说是很重要的,一般很多网站都需要读取服务器 ...

  7. js 如何将dom转换为 图片(base64)

    1.引入js <script src="https://cdn.bootcss.com/html2canvas/0.4.1/html2canvas.js"></s ...

  8. js object数据类型

    1.object数据类型,[可以]认为JavaScript中顶级数据类型.在JavaScript绝大多数 高级类型对象都是object类型 2.如何创建一个object类型对象 1) 通过调用Obje ...

  9. hadoop2.x HDFS HA linux环境搭建

    HDFS High Availability Using the Quorum Journal Manager 准备3台机器可以更多   NN  DN  ZK  ZKFC  JN  RM  DM  n ...

  10. Epson L4158打印机安装与配置

    上周购买了一台打印.扫描.复印三合一的Epson L4158喷墨打印机,主要用于打印数学纸版笔记套图.长笛乐谱.常用软件的cheatsheet(例如,GNU/Linux命令.GNU Emacs快捷键. ...