一、Eureka的高可用性

  Eureka下面的服务实例默认每隔30秒会发送一个HTTP心跳给Eureka,来告诉Eureka服务还活着,每个服务实例每隔30秒也会通过HTTP请求向Eureka获取服务列表,这就相当于一个服务实例一分钟会与Eureka进行四次请求,当服务实例多了以后,就要考虑Eureka的压力,如果我们有1000个服务实例,一分钟就会有4000次请求,平均每秒70次请求,不过Eureka内部是通过内存建立一个HashMap来维护服务实例列表的,并且还做了读写分离,所以保证多个实例的心跳是没有问题的,要注意的是保证Eureka的高可用,生产环境中如果Eureka挂掉,相当于所有实例之间都没办法联系了,我们可以在多台机器上部署Eureka(尽量不要同时在一台机器上部署,因为出问题时,一般整个机器的资源都不能正常使用了),可以部署三个Eureka实例,然后将每个服务实例同时注册到三台Eureka上面,这样即使某个Eureka挂掉了,也不会影响整个系统的运行。

  配置的方式也很简单,部署好多台Eureka实例后,只需要将每个服务实例分别注册到每个Eureka上面即可

eureka:
client:
serviceUrl:
defaultZone: http://eureka1:/eureka/, http://eureka2:/eureka/

二、服务熔断和服务降级

  微服务之间的调用两种情况,网关与服务之间的调用,服务与服务之间的调用,当某个服务的响应时间过长,调用链就会等待,当请求量多了,就会引起雪崩,所以就需要用到服务熔断组件hystrix,当调用超时时直接返回,并且设置服务降级策略,当发生熔断时的补救措施,比如监控告警,记录SQL日志后续进行数据恢复等

1、服务降级配置

  当出现服务熔断时,我们需要配置服务熔断的处理策略,服务降级有两种情况,网关层面做降级和服务之间做降级

(1)网关层面降级:只需要重写ZuulFallbackProvider的方法,即可定制返回值

@Component
public class GatewayFallback implements ZuulFallbackProvider
{
@Override
public String getRoute()
{
// 这里配置服务降级是针对哪个服务实例的,可以填写服务id,如果返回null则是针对所有服务
return null;
}
@Override
public ClientHttpResponse fallbackResponse()
{
// 服务熔断后,返回的内容
return new ClientHttpResponse()
{
@Override
public InputStream getBody() throws IOException
{
JSONObject result = new JSONObject();
result.put("error_code", -1);
result.put("error_info", "网络繁忙");
return new ByteArrayInputStream(result.toString().getBytes("UTF-8"));
}
@Override
public HttpHeaders getHeaders()
{
// 返回Json格式的数据
HttpHeaders headers = new HttpHeaders();
headers.setContentType(MediaType.APPLICATION_JSON_UTF8);
return headers;
}
@Override
public HttpStatus getStatusCode() throws IOException
{
// 返回的HTTP错误码
return HttpStatus.OK;
}
@Override
public int getRawStatusCode() throws IOException
{
return HttpStatus.OK.value();
}
@Override
public String getStatusText() throws IOException
{
return HttpStatus.OK.getReasonPhrase();
}
@Override
public void close()
{
// 进行一些自定义的处理,比如监控告警
}
};
}
}

(2)服务之间降级:服务之间的调用一般是使用Feign组件,我们需要为Feign接口声明的每个方法编写处理的逻辑,通过注解的fallback属性来指定服务降级的实现类

@FeignClient(value = "clientService", fallback = ClientServiceFallback.class)
public interface ClientService
{
@RequestMapping(method = RequestMethod.POST, value = "/test", produces = MediaType.APPLICATION_JSON_VALUE)
String queryClientById(@RequestParam("id") String id);
}
public class ClientServiceFallback implements ClientService
{
@Override
public String queryClientById(String id)
{
// 进行一些自定义的处理
return null;
}
}

2、服务熔断配置

  服务熔断的参数配置非常重要,合理的参数配置才能更好地利用好机器资源,既不会浪费,也能合理对服务进行熔断防止雪崩

(1)熔断超时时间设置:这个时间一定要根据情况合理选择,不能太高也不能太低,如果设置太高,当服务出现问题时,每个线程都要等待很久,所有线程卡死就会导致用户根本无法正常使用,如果太小,出现网络波动就会影响服务质量,合理的设置一般是比如你的接口处理时间是200ms,那你可以设置300ms,比正常的响应时间大一点点,防止网络波动出现熔断

hystrix.command.default.execution.isolation.thread.timeoutInMilliseconds: 

(2)Hystrix线程池大小设置:首先评估你的服务压力,比如你的服务每秒需要处理100个请求,每个请求的处理时间是200ms,相当于1个线程1秒可以处理5个请求,100/5=20,可以算出20个线程就可以处理请求,我们设置就可以设置25个线程,多给5个线程用来留些后路,防止一些特点时间点有大量的请求

hystrix.threadpool.default.coreSize: 

三、最后

  应对高并发,最重要还是先要保证业务逻辑的处理速度,才能从根本上优化,比如进行SQL查询时,尽量避免多表关联,SQL语句越简单越好,数据表加索引,不要使用外键,外键会在一定程度上影响性能,且不容易维护,我个人建议通过增加其他表的id字段来维护表之间的关系

SpringCloud应对高并发的思路的更多相关文章

  1. Memcached笔记——(四)应对高并发攻击【转】

    http://snowolf.iteye.com/blog/1677495 近半个月过得很痛苦,主要是产品上线后,引来无数机器用户恶意攻击,不停的刷新产品各个服务入口,制造垃圾数据,消耗资源.他们的最 ...

  2. 《即时消息技术剖析与实战》学习笔记10——IM系统如何应对高并发

    一.IM 系统的高并发场景 IM 系统中,高并发多见于直播互动场景.比如直播间,在直播过程中,观众会给主播打赏.送礼.发送弹幕等,尤其是明星直播间,几十万.上百万人的规模一点也不稀奇.近期随着武汉新型 ...

  3. Memcached笔记——(四)应对高并发攻击

    近半个月过得很痛苦,主要是产品上线后,引来无数机器用户恶意攻击,不停的刷新产品各个服务入口,制造垃圾数据,消耗资源.他们的最好成绩,1秒钟可以并发6次,赶在Database入库前,Cache进行Mis ...

  4. 【Redis】1、Jedis对管道、事务以及Watch的操作来应对高并发

    对于一个互联网平台来说,高并发是经常会遇到的场景.最有代表性的比如秒杀和抢购.高并发会出现三个特点: 1.高并发读取 2.高并发写入(一致性) 3.出现超卖问题 前端如何应对? 1.缓存静态数据,例如 ...

  5. java高并发解决思路

    一个小型的网站,比如个人网站,可以使用最简单的html静态页面就实现了,配合一些图片达到美化效果,所有的页面均存放在一个目录下,这样的网站对系统架构.性能的要求都很简单,随着互联网业务的不断丰富,网站 ...

  6. 每一个程序员都应该知道的高并发处理技巧、创业公司如何解决高并发问题、互联网高并发问题解决思路、caoz大神多年经验总结分享

    本文来源于caoz梦呓公众号高并发专辑,以图形化.松耦合的方式,对互联网高并发问题做了详细解读与分析,"技术在短期内被高估,而在长期中又被低估",而不同的场景和人员成本又导致了巨头 ...

  7. SSM(Spring+SpringMVC+MyBatis)高并发优化思路

    SSM(Spring+SpringMVC+MyBatis)框架集由Spring.MyBatis两个开源框架整合而成(SpringMVC是Spring中的部分内容).常作为数据源较简单的web项目的框架 ...

  8. php 处理高并发的思路

    1.nginx 服务器,提高网站服务器并发性能 2.控制大文件的下载,减少CPU的消耗. 3.对于sql查询做缓存. 4.静态页面文件缓存. 5.CND缓存静态文件, 6.反向代理到多个服务器,用来分 ...

  9. 基于tomcat为了应对高并发模型实现webserver

    在博客上,一个简单的AIOweb来样加工.查看AIO异步处理,依靠操作系统完成IO操作Proactor处理模型确实很强大,它可以实现高并发.高响应server一个很好的选择,但在tomcat中间con ...

随机推荐

  1. On the Optimal Approach of Survivable Virtual Network Embedding in Virtualized SDN

    Introduction and related work 云数据中心对于虚拟技术是理想的创新地方. 可生存性虚拟网络映射(surviavable virtual network embedding ...

  2. python中的矩阵、多维数组

    2. 创建一般的多维数组 import numpy as np a = np.array([1,2,3], dtype=int)  # 创建1*3维数组   array([1,2,3]) type(a ...

  3. /usr/lib/python2.7/site-packages/requests/__init__.py:80: RequestsDependencyWarning: urllib3 (1.22) or chardet (2.2.1) doesn't match a supported version! RequestsDependencyWarning)

    [root@iZwz9bhan5nqzh979qokrkZ ~]# ansible all -m ping /usr/lib/python2.7/site-packages/requests/__in ...

  4. 正则表达示 for Python3

    前情提要 从大量的文字内容中找到自己想要的东西,正则似乎是最好的方法.也是写爬虫不可缺少的技能.所以,别墨迹了赶紧好好学吧! 教程来自http://www.runoob.com/python3/pyt ...

  5. AI应用开发实战

    AI应用开发实战 出发点 目前,人工智能在语音.文字.图像的识别与解析领域带来了跨越式的发展,各种框架.算法如雨后春笋一般,互联网上随处可见与机器学习有关的学习资源,各大mooc平台.博客.公开课都推 ...

  6. 依赖注入[6]: .NET Core DI框架[编程体验]

    毫不夸张地说,整个ASP.NET Core框架是建立在一个依赖注入框架之上的,它在应用启动时构建请求处理管道过程中,以及利用该管道处理每个请求过程中使用到的服务对象均来源于DI容器.该DI容器不仅为A ...

  7. Dubbo支持的协议的详解

    Dubbo支持dubbo.rmi.hessian.http.webservice.thrift.redis等多种协议,但是Dubbo官网是推荐我们使用Dubbo协议的.下面我们就针对Dubbo的每种协 ...

  8. 快速理解Token,Cookie,Session

    在Web应用中,HTTP请求是无状态的.即:用户第一次发起请求,与服务器建立连接并登录成功后,为了避免每次打开一个页面都需要登录一下,就出现了cookie,Session. Cookie Cookie ...

  9. [Swift]LeetCode404. 左叶子之和 | Sum of Left Leaves

    Find the sum of all left leaves in a given binary tree. Example: 3 / \ 9 20 / \ 15 7 There are two l ...

  10. [Swift]LeetCode929. 独特的电子邮件地址 | Unique Email Addresses

    Every email consists of a local name and a domain name, separated by the @ sign. For example, in ali ...