JVM(三)对象的生死判定和算法详解
好的文章是能把各个知识点,通过逻辑关系串连起来,让人豁然开朗的同时又记忆深刻。
导读:对象除了生死之外,还有其他状态吗?对象真正的死亡,难道只经历一次简单的判定?如何在垂死的边缘“拯救”一个将死对象?判断对象的生死存活都有那些算法?本文带你一起找到这些答案。
在正式开始之前,我们先来了解一下垃圾回收。
GC介绍
GC:Garbage Collection,中文翻译为垃圾回收。
GC的历史
GC有着很长的历史了,最初的GC算法发布于1960年(已经快有60年的历史了),Lisp之父John McCarthy发布的,他是一名非常有名的黑客,也是人工智能之父,同时也是GC之父。
为什么要学习GC?
1、排查内存溢出和内存泄露的问题。
2、系统调优,处理更高的并发瓶颈。
GC的作用
1、找到内存空间的垃圾。
2、回收垃圾。
对象生死判断算法
垃圾回收的第一步就是判断对象是否存活,只有“死去”的对象,才会被垃圾回收器所收回。
引用计数器算法
引用计算器判断对象是否存活的算法是这样的:给每一个对象设置一个引用计数器,每当有一个地方引用这个对象的时候,计数器就加1,与之相反,每当引用失效的时候就减1。
优点:实现简单、性能高。
缺点:增减处理频繁消耗cpu计算、计数器占用很多位浪费空间、最重要的缺点是无法解决循环引用的问题。
因为引用计数器算法很难解决循环引用的问题,所以主流的Java虚拟机都没有使用引用计数器算法来管理内存。
来看一段循环引用的代码:
public class ReferenceDemo {
public Object instance = null;
private static final int _1Mb = 1024 * 1024;
private byte[] bigSize = new byte[10 * _1Mb]; // 申请内存
public static void main(String[] args) {
System.out.println(String.format("开始:%d M",Runtime.getRuntime().freeMemory() / (1024 * 1024)));
ReferenceDemo referenceDemo = new ReferenceDemo();
ReferenceDemo referenceDemo2 = new ReferenceDemo();
referenceDemo.instance = referenceDemo2;
referenceDemo2.instance = referenceDemo;
System.out.println(String.format("运行:%d M",Runtime.getRuntime().freeMemory() / (1024 * 1024)));
referenceDemo = null;
referenceDemo2 = null;
System.gc(); // 手动触发垃圾回收
System.out.println(String.format("结束:%d M",Runtime.getRuntime().freeMemory() / (1024 * 1024)));
}
}
运行的结果:
开始:117 M
运行中:96 M
结束:119 M
从结果可以看出,虚拟机并没有因为相互引用就不回收它们,也侧面说明了虚拟机并不是使用引用计数器实现的。
可达性分析算法
在主流的语言的主流实现中,比如Java、C#、甚至是古老的Lisp都是使用的可达性分析算法来判断对象是否存活的。
这个算法的核心思路就是通过一些列的“GC Roots”对象作为起始点,从这些对象开始往下搜索,搜索所经过的路径称之为“引用链”。
当一个对象到GC Roots没有任何引用链相连的时候,证明此对象是可以被回收的。如下图所示:
在Java中,可作为GC Roots对象的列表:
- Java虚拟机栈中的引用对象。
- 本地方法栈中JNI(既一般说的Native方法)引用的对象。
- 方法区中类静态常量的引用对象。
- 方法区中常量的引用对象。
对象生死与引用的关系
从上面的两种算法来看,不管是引用计数法还是可达性分析算法都与对象的“引用”有关,这说明:对象的引用决定了对象的生死。那对象的引用都有那些呢?
在JDK1.2之前,引用的定义很传统:如果reference类型的数据中存储的数值代表的是另一块内存的起始地址,就称这块内存代表着一块引用。
这样的定义很纯粹,但是也很狭隘,这种情况下一个对象要么被引用,要么没引用,对于介于两者之间的对象显得无能为力。
JDK1.2之后对引用进行了扩充,将引用分为:
- 强引用(Strong Reference)
- 软引用(Soft Reference)
- 弱引用(Weak Reference)
- 虚引用(Phantom Reference)
这也就是文章开头第一个问题的答案,对象不是非生即死的,当空间还足够时,还可以保留这些对象,如果空间不足时,再抛弃这些对象。很多缓存功能的实现也符合这样的场景。
强引用、软引用、弱引用、虚引用,这4种引用的强度是依次递减的。
强引用:在代码中普遍存在的,类似“Object obj = new Object()”这类引用,只要强引用还在,垃圾收集器永远不会回收掉被引用的对象。
软引用:是一种相对强引用弱化一些的引用,可以让对象豁免一些垃圾收集,只有当jvm认为内存不足时,才会去试图回收软引用指向的对象。jvm会确保在抛出OutOfMemoryError之前,清理软引用指向的对象。
弱引用:非必需对象,但它的强度比软引用更弱,被弱引用关联的对象只能生存到下一次垃圾收集发生之前。
虚引用:也称为幽灵引用或幻影引用,是最弱的一种引用关系,无法通过虚引用来获取一个对象实例,为对象设置虚引用的目的只有一个,就是当着个对象被收集器回收时收到一条系统通知。
死亡标记与拯救
在可达性算法中不可达的对象,并不是“非死不可”的,要真正宣告一个对象死亡,至少要经历两次标记的过程。
如果对象在进行可达性分析之后,没有与GC Roots相连接的引用链,它会被第一次标记,并进行筛选,筛选的条件是此对象是否有必要执行finalize()方法。
执行finalize()方法的两个条件:
1、重写了finalize()方法。
2、finalize()方法之前没被调用过,因为对象的finalize()方法只能被执行一次。
如果满足以上两个条件,这个对象将会放置在F-Queue的队列之中,并在稍后由一个虚拟机自建的、低优先级Finalizer线程来执行它。
对象的“自我拯救”
finalize()方法是对象脱离死亡命运最后的机会,如果对象在finalize()方法中重新与引用链上的任何一个对象建立关联即可,比如把自己(this关键字)赋值给某个类变量或对象的成员变量。
来看具体的实现代码:
public class FinalizeDemo {
public static FinalizeDemo Hook = null;
@Override
protected void finalize() throws Throwable {
super.finalize();
System.out.println("执行finalize方法");
FinalizeDemo.Hook = this;
}
public static void main(String[] args) throws InterruptedException {
Hook = new FinalizeDemo();
// 第一次拯救
Hook = null;
System.gc();
Thread.sleep(500); // 等待finalize执行
if (Hook != null) {
System.out.println("我还活着");
} else {
System.out.println("我已经死了");
}
// 第二次,代码完全一样
Hook = null;
System.gc();
Thread.sleep(500); // 等待finalize执行
if (Hook != null) {
System.out.println("我还活着");
} else {
System.out.println("我已经死了");
}
}
}
执行的结果:
执行finalize方法
我还活着
我已经死了
从结果可以看出,任何对象的finalize()方法都只会被系统调用一次。
不建议使用finalize()方法来拯救对象,原因如下:
1、对象的finalize()只能执行一次。
2、它的运行代价高昂。
3、不确定性大。
4、无法保证各个对象的调用顺序。
参考
《深入理解Java虚拟机》
《垃圾回收的算法与实现》
※ 为写好一篇技术文章,背后是读了两本书的“艰辛”。写作不易,请多支持!!!
最后
关注公众号,发送“gc”关键字,领取《垃圾回收的算法与实现》学习资料。
JVM(三)对象的生死判定和算法详解的更多相关文章
- 第三十一节,目标检测算法之 Faster R-CNN算法详解
Ren, Shaoqing, et al. “Faster R-CNN: Towards real-time object detection with region proposal network ...
- 第三十节,目标检测算法之Fast R-CNN算法详解
Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2 ...
- 安全体系(三)——SHA1算法详解
本文主要讲述使用SHA1算法计算信息摘要的过程. 安全体系(零)—— 加解密算法.消息摘要.消息认证技术.数字签名与公钥证书 安全体系(一)—— DES算法详解 安全体系(二)——RSA算法详解 为保 ...
- 机器学习经典算法详解及Python实现--基于SMO的SVM分类器
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector ...
- [Spark内核] 第36课:TaskScheduler内幕天机解密:Spark shell案例运行日志详解、TaskScheduler和SchedulerBackend、FIFO与FAIR、Task运行时本地性算法详解等
本課主題 通过 Spark-shell 窥探程序运行时的状况 TaskScheduler 与 SchedulerBackend 之间的关系 FIFO 与 FAIR 两种调度模式彻底解密 Task 数据 ...
- JVM的类加载过程以及双亲委派模型详解
JVM的类加载过程以及双亲委派模型详解 这篇文章主要介绍了JVM的类加载过程以及双亲委派模型详解,类加载器就是根据指定全限定名称将 class 文件加载到 JVM 内存,然后再转化为 class 对象 ...
- BM算法 Boyer-Moore高质量实现代码详解与算法详解
Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...
- kmp算法详解
转自:http://blog.csdn.net/ddupd/article/details/19899263 KMP算法详解 KMP算法简介: KMP算法是一种高效的字符串匹配算法,关于字符串匹配最简 ...
- [转] KMP算法详解
转载自:http://www.matrix67.com/blog/archives/115 KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的K ...
随机推荐
- 利用jquery-barcode.js实现生成条形码
jquery-barcode官网 js下载地址-github 代码示范(官网上也有) <!DOCTYPE html> <html> <head> <meta ...
- java中bigInteger的应用
BigInteger abs() 返回大整数的绝对值BigInteger add(BigInteger val) 返回两个大整数的和BigInteger and(BigInteger val) 返 ...
- Java 将键盘中的输入保存到数组
import java.util.Scanner; import java.util.InputMismatchException; public class saveInputToArr { pub ...
- mysql_Navicat数据库破解
Navicat Premium 12.1.16.0安装与激活 Navicat Premium 12是一套数据库开发管理工具,支持连接 MySQL.Oracle等多种数据库,可以快速轻松地创建.管理和维 ...
- 2.Git配置和关联GitHub
1.配置本地信息, 右键Git Bush Here git config –global user.name '账号名' ##回车 git config –global user.email 邮箱 # ...
- 判断以xx开头的字符串
public static void main(String[] args) { String str = "EAN_13,1534651"; String strHttp = & ...
- js-day02-BOM和DOM
BOM和Document对象常见属性和方法: BOM是browser object model的缩写,简称浏览器对象模型. Document 对象每个载入浏览器的 HTML 文档都会成为 Docume ...
- 请不要在JDK7及以上用Json-lib了
[Json-lib 介绍] Json-lib 是以前 Java 常用的一个 Json 库,最后的版本是 2.4,分别提供了 JDK 1.3 和 1.5 的支持,最后更新时间是 2010年12月14日. ...
- Python函数声明以及与其他编程语言数据类型的比较
1.函数声明 与其它大多数语言一样 Python 有函数,但是它没有像 C++ 一样的独立的头文件:或者像 Pascal 一样的分离的 interface / implementation 段.在需 ...
- Javascript中的this关键字用法详解
在javascript里面,this是一个特殊的对象,它不像其他编程语言那样,是存储在实例中的值,直接指向此实例. 而是作为一个单独的指针,在不同的情况之下,指向不同的位置,这也是为什么我们会将它搞混 ...