LOJ

BZOJ

洛谷


点分治。考虑如何计算过\(rt\)的答案。

记\(pre[i]\)表示(之前的)子树内循环匹配了\(S\)的前缀\(i\)的路径有多少,\(suf[i]\)表示(之前的)子树内循环匹配了\(S\)的后缀\(i\)的路径有多少。

一个点如果能作为前缀\(dep\%m\)出现,然后\(s[rt]=s[dep\%m+1]\),就可以统计\(suf[m-dep\%m-1]\)的贡献。

作为后缀出现同理。

判某个深度\(dep\)是否是循环匹配了\(S\)的前缀\(i\),本来想的是首先\(dep\sim dep-m+1\)匹配了整个\(S\),其次再判\(dep-m\)匹配了前缀\(i\)。其实只要先把\(S\)变成长度为\(n\)的循环串,再对它求\(Hash\)就可以惹。这样每次插入一个字符时在字符串开头插入,只需要判断\(hs_{now}==hs[dep]\)。

判后缀就对应一下那个\(hs_{now}\)好了(每次在开头插入字符),即若出现了\(s[n-2],s[n-1],s[n]\),得到的Hash值是\(s[n],s[n-1],s[n-2]\)的,所以把串反过来求Hash值,判一下\(hs_{now}==hs'[dep]\)就好啦。

复杂度\(O(n\log n)\),这个数据范围应该卡不掉的叭?(应该。但是实际数据范围小惹?)

初始化\(1e6\)的\(pow\)数组还不如每次初始化\(n\)的=-=

另外单组数据是\(3\leq n,m\leq 1e5\)的。


//9940kb	2808ms
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define seed 31
#define gc() getchar()
#define MAXIN 500000
//#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
typedef unsigned long long ull;
const int N=1e5+5; int m,s[N],ch[N],Enum,H[N],nxt[N<<1],to[N<<1],Min,root,sz[N],pre[N],suf[N],spre[N],ssuf[N],Maxd;
LL Ans;
ull pw[N],hs[N],hs2[N];
bool vis[N];
char IN[MAXIN],*SS=IN,*TT=IN; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
}
inline void AE(int u,int v)
{
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum;
to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum;
}
inline void GetHash(ull *a,int *s,int n,int m)
{
for(int i=m+1; i<=n; ++i) s[i]=s[i-m];
for(int i=1; i<=n; ++i) a[i]=a[i-1]*seed+s[i];
}
void FindRoot(int x,int fa,int tot)
{
int mx=0; sz[x]=1;
for(int i=H[x],v; i; i=nxt[i])
if(!vis[v=to[i]]&&v!=fa)
FindRoot(v,x,tot), sz[x]+=sz[v], sz[v]>mx&&(mx=sz[v]);
mx=std::max(mx,tot-mx);
if(mx<Min) Min=mx, root=x;
}
void DFS(int x,int fa,int dep,ull val,const int Chrt)
{
Maxd=std::max(Maxd,dep), val+=pw[dep-1]*ch[x];
int tmp=dep%m;
if(val==hs[dep]) ++pre[tmp], s[tmp+1]==Chrt&&(Ans+=ssuf[m-tmp-1]);
if(val==hs2[dep]) ++suf[tmp], s[m-tmp]==Chrt&&(Ans+=spre[m-tmp-1]);
for(int i=H[x],v; i; i=nxt[i])
if(!vis[v=to[i]]&&v!=fa) DFS(v,x,dep+1,val,Chrt);
}
void Solve(int x)
{
vis[x]=1; int mx=0; spre[0]=ssuf[0]=1;
// spre[0]=ch[x]==s[1], ssuf[0]=ch[x]==s[m];//这个不需要判的叭。因为统计贡献时要求s[p]=ch[rt]。
for(int i=H[x],v; i; i=nxt[i])
if(!vis[v=to[i]])
{
Maxd=0, DFS(v,x,1,0,ch[x]), Maxd=std::min(Maxd,m-1), mx=std::max(mx,Maxd);
for(int j=0,tmp=Maxd; j<=tmp; ++j) spre[j]+=pre[j], ssuf[j]+=suf[j], pre[j]=suf[j]=0;
}
for(int i=0; i<=mx; ++i) spre[i]=ssuf[i]=0;
for(int i=H[x],v; i; i=nxt[i])
if(!vis[v=to[i]]) Min=N, FindRoot(v,x,sz[v]), Solve(root);
} int main()
{
pw[0]=1;
for(int T=read(),mx=0; T--; )
{
int n=read(),m=read(); ::m=m;
Enum=0, memset(H,0,n+1<<2), memset(vis,0,n+1);
if(mx<n)
{
for(int i=mx+1; i<=n; ++i) pw[i]=pw[i-1]*seed;
mx=n;
}
register char c; while(!isalpha(c=gc())); ch[1]=c-65+1;
for(int i=2; i<=n; ++i) ch[i]=gc()-65+1;
for(int i=1; i<n; ++i) AE(read(),read());
while(!isalpha(c=gc())); s[1]=c-65+1;
for(int i=2; i<=m; ++i) s[i]=gc()-65+1;
GetHash(hs,s,n,m), std::reverse(s+1,s+1+m), GetHash(hs2,s,n,m), std::reverse(s+1,s+1+m);
Ans=0, Min=N, FindRoot(1,1,n), Solve(root), printf("%lld\n",Ans);
} return 0;
}

BZOJ.4598.[SDOI2016]模式字符串(点分治 Hash)的更多相关文章

  1. 【BZOJ4598】[Sdoi2016]模式字符串 树分治+hash

    [BZOJ4598][Sdoi2016]模式字符串 Description 给出n个结点的树结构T,其中每一个结点上有一个字符,这里我们所说的字符只考虑大写字母A到Z,再给出长度为m的模式串s,其中每 ...

  2. BZOJ4598: [Sdoi2016]模式字符串(点分治 hash)

    题意 题目链接 Sol 直接考虑点分治+hash匹配 设\(up[i]\)表示\(dep \% M = i\)的从下往上恰好与前\(i\)位匹配的个数 \(down\)表示\(dep \% M = i ...

  3. bzoj 4598: [Sdoi2016]模式字符串

    题目描述 给出n个结点的树结构T,其中每一个结点上有一个字符,这里我们所说的字符只考虑大写字母A到Z,再给出长度为m的模式串s,其中每一位仍然是A到z的大写字母. Alice希望知道,有多少对结点&l ...

  4. Bzoj4598: [Sdoi2016]模式字符串 点分治 哈希

    国际惯例的题面:这种关于树上路径的题,我也没什么好办法,只好点分治.考虑当前分治重心为root,如何统计经过分治重心的路径的答案.我们令prf[i]表示某个点到root的路径(不含root)已经循环匹 ...

  5. P4075 [SDOI2016]模式字符串

    总结 P4075 [SDOI2016]模式字符串 题目描述 给出n个结点的树结构T,其中每一个结点上有一个字符,这里我们所说的字符只考虑大写字母A到Z,再给出长度为m的模式串s,其中每一位仍然是A到z ...

  6. BZOJ4598 [Sdoi2016]模式字符串 【点分治 + hash】

    题目 给出n个结点的树结构T,其中每一个结点上有一个字符,这里我们所说的字符只考虑大写字母A到Z,再给出长度为m 的模式串s,其中每一位仍然是A到z的大写字母.Alice希望知道,有多少对结点< ...

  7. bzoj4598: [Sdoi2016]模式字符串

    Description 给出n个结点的树结构T,其中每一个结点上有一个字符,这里我们所说的字符只考虑大写字母A到Z,再给出长度为m 的模式串s,其中每一位仍然是A到z的大写字母.Alice希望知道,有 ...

  8. [SDOI2016]模式字符串

    Description 给出n个结点的树结构T,其中每一个结点上有一个字符,这里我们所说的字符只考虑大写字母A到Z,再给出长度为m的模式串s,其中每一位仍然是A到z的大写字母.Alice希望知道,有多 ...

  9. [SDOI2016] 模式字符串 (BZOJ4598 & VIJOS1995)

    首先直接点分+hash就可以做,每个点用hash判断是否为S重复若干次后的前缀或后缀,每个子树与之前的结果O(m)暴力合并.在子树大小<m时停止分治,则总复杂度为O(nlog(n/m)). 问题 ...

随机推荐

  1. Ubuntu 服务器上面--安装和配置mysql 【转】

    更新源列表 打开"终端窗口",输入"sudo apt-get update"-->回车-->"输入root用户的密码"--> ...

  2. MySQL实战45讲学习笔记:事务隔离级别(第三讲)

    一.隔离性与隔离级别 1.事务的特性 原子性 一致性 隔离性 持久性 2.不同事务隔离级别的区别 读未提交:别人改数据的事务尚未提交,我在我的事务中也能读到.读已提交:别人改数据的事务已经提交,我在我 ...

  3. dom4j,json,pattern性能对比【原】

    报文大概2000字节,对比时为只取其中某个节点的值即可. 以下对比可知取少量节点时pattern性能是远大于dom4j,和json的, 但取大量的时候就不能这么以偏概全了. dom4j和pattern ...

  4. 未能找到类型或命名空间名称“Quartz”

    C# 项目中使用Quartz必须使用.NetFrameWork4,而不能使用Client,否则的话会出现如题所示错误.

  5. [数学笔记Mathematical Notes]2-一个带对数的积分不等式

    定理. $$\bex \int_0^1\frac{\ln^2x}{x^x}\rd x<2\int_0^1 \frac{\rd x}{x^x}. \eex$$ 证明: 由分部积分及 Fubini ...

  6. 关于MySql经典高频查询语句的整理

    一查询数值型数据: SELECT * FROM tb_name WHERE sum > 100; 查询谓词:>,=,<,<>,!=,!>,!<,=>,= ...

  7. 使用echarts-for-react 绘制折线图 报错:`series.type should be specified `

    解决办法: 在动态获取值的函数前面加 访问器属性  get ,去获取对象的属性 @inject('commonStore', 'reportUIStore') @observer class Line ...

  8. C#控件数组批量生成控件

    在编写C#窗体应用程序的时候,有时候需要生成好多个功能相似的同一种控件(比如数字键盘按键.单选框等),这时候使用窗体编辑器,费时费力,不便于修改.因此可以采用批量生成控件的形式. 以批量生成按钮为例 ...

  9. CF1119A Ilya and a Colorful Walk

    题目地址:CF1119A Ilya and a Colorful Walk \(O(n^2)\) 肯定过不掉 记 \(p_i\) 为从下标 \(1\) 开始连续出现 \(i\) 的个数 那么对于每一个 ...

  10. 零基础入门微信小程序开发

    注:本文来源于:<零基础入门微信小程序开发> 课程介绍 本达人课是一个系列入门教程,目标是从 0 开始带领读者上手实战,课程以微信小程序的核心概念作为主线,介绍配置文件.页面样式文件.Ja ...