Regularity criteria for NSE 5: $u_3,\om_3$
In [Zhang, Zujin. Serrin-type regularity criterion for the Navier-Stokes equations involving one velocity and one vorticity component. Czechoslovak Math. J. 68 (2018), no. 1, 219--225], we give an affirmative answer to an open problem in [Penel, Patrick; Pokorn\'y, Milan. Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity. Appl. Math. 49 (2004), no. 5, 483--493], that is, whether or not we could obtain a regularity criterion involving only $u_3$ and $\om_3=\p_1u_2-\p_2u_1$. Our result reveals that if $$\bee\label{this} \bea u_3\in L^p(0,T;L^q(\bbR^3));&\quad \omega_3\in L^r(0,T;L^s(\bbR^3)),\\ \frac{2}{p}+\frac{3}{q}=1,\ 3<q\leq\infty;&\quad \frac{2}{r}+\frac{3}{s}=2,\quad \frac{3}{2}< s\leq \infty, \eea \eee$$ then the solution is smooth on $(0,T)$.
Regularity criteria for NSE 5: $u_3,\om_3$的更多相关文章
- Regularity criteria for NSE 6: $u_3,\p_3u_1,\p_3u_2$
In [Zujin Zhang, Jinlu Li, Zheng-an Yao, A remark on the global regularity criterion for the 3D Navi ...
- Regularity criteria for NSE 4: $\p_3u$
In [Zhang, Zujin. An improved regularity criterion for the Navier–Stokes equations in terms of one d ...
- [Papers]NSE, $\n u_3$, Lebesgue space, [Pokorny, EJDE, 2003; Zhou, MAA, 2002]
$$\bex \n u_3\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{3}{2},\quad 2\leq q\leq \i ...
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 4: $u\cdot \om$
在 [Berselli, Luigi C.; Córdoba, Diego. On the regularity of the solutions to the 3D Navier-Stokes eq ...
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 3: $u\times \f{\om}{|\om|}\cdot \f{\vLm^\be u}{|\vLm^\be u|}$
在 [Chae, Dongho; Lee, Jihoon. On the geometric regularity conditions for the 3D Navier-Stokes equati ...
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 2: $u\times \om\cdot \n\times \om$
在 [Lee, Jihoon. Notes on the geometric regularity criterion of 3D Navier-Stokes system. J. Math. Phy ...
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 1: $u\times \om$
在 [Chae, Dongho. On the regularity conditions of suitable weak solutions of the 3D Navier-Stokes equ ...
- Research Papers
NSE, $\bbu$ [Papers]NSE, $u$, Lorentz space [Sohr, JEE, 2001] [Papers]NSE, $u$, Lorentz space [Bjorl ...
- 液晶流在齐次 Besov 空间中的正则性准则
在 [Zhang, Zujin. Regularity criteria for the three dimensional Ericksen–Leslie system in homogeneous ...
随机推荐
- LeetCode算法题-Max Consecutive Ones(Java实现)
这是悦乐书的第242次更新,第255篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第109题(顺位题号是485).给定二进制数组,找到此数组中连续1的最大数量.例如: 输 ...
- 初识shell编程
1.shell编程之为什么学.怎么学 为什么学shell编程 Linux系统批量管理 提升工作效率,减少重复工作 学好shell编程所需要的基础知识 熟悉使用vim编辑器 熟悉SSH终端 熟练掌握Li ...
- 第1章 初始Docker容器
1.1 什么是Docker slogan:Build Ship Run Any App Anywher.关键在于Ship,通过把程序和程序运行所需要的环境一起交付. Linux容器技术: Docker ...
- eclipse上配置svn
eclipse里安装SVN插件,一般来说,有两种方式: 直接下载SVN插件,将其解压到eclipse的对应目录里 使用eclipse 里Help菜单的“Install New Software”,通过 ...
- BZOJ3711 Druzyny 最大值分治、线段树
传送门 被暴力包菜了,然而还不会卡-- 有一个很暴力的DP:设\(f_i\)表示给\(1\)到\(i\)分好组最多可以分多少组,转移枚举最后一个组.接下来考虑优化这个暴力. 考虑:对于每一个位置\(i ...
- SpringCloud(1)服务注册与发现Eureka
1.创建1个空白的工程 2.创建2个model工程 一个module(即SpringBoot)工程作为服务注册中心,即Eureka Server,另一个作为Eureka Client. Eureka ...
- HTML5新增特性
1. 语义化标签 2. 增强型表单 (1)新的表单输入类型 (2)新表单元素 (3)新表单属性 3. 视频和音频 4. Canvas绘图(图形.路径.文本.渐变.图像) 5. SVG绘图 (与Canv ...
- 小小知识点(三)——MATLAB如何把三维图用二维图表示
MATLAB程序: x=-1:0.1:1; [x y] = meshgrid(x); %grid data = load("filename.txt"); figure mesh( ...
- 产品经理与程序员矛盾&相处
产品运营 - 知乎https://www.zhihu.com/topic/19551958/hot 产品经理与程序员矛盾的本质是什么? - 知乎https://www.zhihu.com/questi ...
- Javascript初识之数据类型
一.JavaScript概述 1.ECMAScript和JavaScript的关系 1996年11月,JavaScript的创造者--Netscape公司,决定将JavaScript提交给国际标准化组 ...