Regularity criteria for NSE 5: $u_3,\om_3$
In [Zhang, Zujin. Serrin-type regularity criterion for the Navier-Stokes equations involving one velocity and one vorticity component. Czechoslovak Math. J. 68 (2018), no. 1, 219--225], we give an affirmative answer to an open problem in [Penel, Patrick; Pokorn\'y, Milan. Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity. Appl. Math. 49 (2004), no. 5, 483--493], that is, whether or not we could obtain a regularity criterion involving only $u_3$ and $\om_3=\p_1u_2-\p_2u_1$. Our result reveals that if $$\bee\label{this} \bea u_3\in L^p(0,T;L^q(\bbR^3));&\quad \omega_3\in L^r(0,T;L^s(\bbR^3)),\\ \frac{2}{p}+\frac{3}{q}=1,\ 3<q\leq\infty;&\quad \frac{2}{r}+\frac{3}{s}=2,\quad \frac{3}{2}< s\leq \infty, \eea \eee$$ then the solution is smooth on $(0,T)$.
Regularity criteria for NSE 5: $u_3,\om_3$的更多相关文章
- Regularity criteria for NSE 6: $u_3,\p_3u_1,\p_3u_2$
In [Zujin Zhang, Jinlu Li, Zheng-an Yao, A remark on the global regularity criterion for the 3D Navi ...
- Regularity criteria for NSE 4: $\p_3u$
In [Zhang, Zujin. An improved regularity criterion for the Navier–Stokes equations in terms of one d ...
- [Papers]NSE, $\n u_3$, Lebesgue space, [Pokorny, EJDE, 2003; Zhou, MAA, 2002]
$$\bex \n u_3\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{3}{2},\quad 2\leq q\leq \i ...
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 4: $u\cdot \om$
在 [Berselli, Luigi C.; Córdoba, Diego. On the regularity of the solutions to the 3D Navier-Stokes eq ...
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 3: $u\times \f{\om}{|\om|}\cdot \f{\vLm^\be u}{|\vLm^\be u|}$
在 [Chae, Dongho; Lee, Jihoon. On the geometric regularity conditions for the 3D Navier-Stokes equati ...
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 2: $u\times \om\cdot \n\times \om$
在 [Lee, Jihoon. Notes on the geometric regularity criterion of 3D Navier-Stokes system. J. Math. Phy ...
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 1: $u\times \om$
在 [Chae, Dongho. On the regularity conditions of suitable weak solutions of the 3D Navier-Stokes equ ...
- Research Papers
NSE, $\bbu$ [Papers]NSE, $u$, Lorentz space [Sohr, JEE, 2001] [Papers]NSE, $u$, Lorentz space [Bjorl ...
- 液晶流在齐次 Besov 空间中的正则性准则
在 [Zhang, Zujin. Regularity criteria for the three dimensional Ericksen–Leslie system in homogeneous ...
随机推荐
- 研究好vif 和vshow
另外从源头上处理的???,怎么自己排查出错误??必须 ??https://www.jb51.net/article/124116.htm
- 一探究竟:Namenode、SecondaryNamenode、NamenodeHA关系
NameNode与Secondary NameNode 很多人都认为,Secondary NameNode是NameNode的备份,是为了防止NameNode的单点失败的,其实并不是在这样.文章Sec ...
- 在windows下远程访问linux桌面
一.安装xrdp工具: # yum install xrdp # yum install tigervnc-server # service xrdp start 以上三个命令执行完毕安装完 ...
- 迭代与JDB
1.题目要求 2.程序设计 首先,命令行输入,还是考虑先将输入的数据转化为整型变量 然后,看到C(n,m)=C(n-1,m-1)+C(n-1,m)公式以及"迭代"这两个字,首先想到 ...
- 19.java反射入门
一.反射机制是什么反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法:对于任意一个对象,都能够调用它的任意一个方法和属性:这种动态获取的信息以及动态调用对象的方法的功能称为jav ...
- zabbix相关
链接:https://pan.baidu.com/s/1gjwZrJGCYM1NWJhhK7IhiQ 密码:76nm
- Luogu5176 公约数 莫比乌斯反演、线性筛
传送门 好像是我们联考时候的题目? 一个结论:\(\gcd(ij,ik,jk) \times \gcd(i,j,k) = \gcd(i,j) \times \gcd(i,k) \times \gcd( ...
- LightGBM大战XGBoost,谁将夺得桂冠?
引 言 如果你是一个机器学习社区的活跃成员,你一定知道 提升机器(Boosting Machine)以及它们的能力.提升机器从AdaBoost发展到目前最流行的XGBoost.XGBoost实际上已经 ...
- 基于 HTML5 的 WebGL 楼宇自控 3D 可视化监控
前言 智慧楼宇和人们的生活息息相关,楼宇智能化程度的提高,会极大程度的改善人们的生活品质,在当前工业互联网大背景下受到很大关注.目前智慧楼宇可视化监控的主要优点包括: 智慧化 -- 智慧楼宇是一个生态 ...
- 不要再被骗了------QQ盗号原理大揭秘
前言 相信大家在懵懂无知的时候都有被盗号的经历吧,QQ胡乱的加好友,突然有个好友传了个文件给你,打开以后发现QQ竟然显示强制下线,然后再也上不去了QAQ,很明显,QQ号被人盗了.最近也是很多小伙伴私信 ...