[再寄小读者之数学篇](2014-06-23 Bernstein's inequality)
$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq \sen{D^k f}_{L^p}\leq C2^{jk} \sen{f}_{L^p}; \eex$$ $$\bex \supp \hat u\subset \sed{|\xi|\leq 2^j} \ra \sen{f}_{L^q}\leq C2^{jn\sex{\frac{1}{p}-\frac{1}{q}}} \sen{f}_{L^p}\quad\sex{1\leq p\leq q\leq \infty}. \eex$$ see [D. Chae, J. Lee, On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics, J. Differential Equations, 256 (2014), 3835--3858].
[再寄小读者之数学篇](2014-06-23 Bernstein's inequality)的更多相关文章
- [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...
- [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...
- [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...
- [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)
$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...
- [再寄小读者之数学篇](2014-06-26 Besov space estimates)
(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...
- [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...
- [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)
(2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...
- [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)
试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...
- [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)
设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.
随机推荐
- 做为一个Python程序员的基本素养
今天在学习的过程中,明白了一些不是Python标准所必须要做的事情,二是做为一个合格的Python程序员应该所遵从的一些规范 分享给大家,有不足的地方请大家指正,此下是我学习的一点心得: 1.在给变量 ...
- rm: cannot remove ‘overlay/’: Device or resource busy
umount /var/lib/docker/overlay #取消挂载就可以啦 rm -rf overlay/
- Mysql共享锁、排他锁、悲观锁、乐观锁及其使用场景
一.相关名词 |--表级锁(锁定整个表) |--页级锁(锁定一页) |--行级锁(锁定一行) |--共享锁(S锁,MyISAM 叫做读锁) |--排他锁(X锁,MyISAM 叫做写锁) |--悲观锁( ...
- 20145203盖泽双《网络对抗技术》拓展:注入:shellcode及return-into-libc攻击
20145203盖泽双<网络对抗技术>拓展:注入:shellcode及return-into-libc攻击 一.注入:shellcode 1.编写一段用于获取Shellcode的C语言代码 ...
- Python学习--Python变量类型
变量存储在内存中的值.这就意味着在创建变量时会在内存中开辟一个空间. 基于变量的数据类型,解释器会分配指定内存,并决定什么数据可以被存储在内存中. 因此,变量可以指定不同的数据类型,这些变量可以存储整 ...
- IntelliJ IDEA 2018.3 重大升级,哪些功能打动了你?
前言 2018.11.28 IntelliJ IDEA 2018.3 正式版发布.对于一个忠实爱好者,迫不及待的我下载了最新版本来体验下.而且 IDEA 今年的第三次重大更新提供了不容错过的显著功能! ...
- linux系统安装redis
redis的下载安装教程 1.进入到linux指定目录中 cd /usr/local 路径看你自己情况 2.下载redis,执行如下命令: wget http://download.re ...
- ES7
本文是自己所学的ES7的一些常用的新特性: 一.padStart()方法,padEnd()方法: 如果某个字符串不够指定长度,有两个方法可以在头部或尾部补全.padStart()用于头部补全,padE ...
- svg(可缩放矢量图形)
入门推荐: http://www.ruanyifeng.com/blog/2018/08/svg.html (教程) http://www.runoob.com/svg/svg-reference.h ...
- 一、Mysql安装
一.官网下载:https://dev.mysql.com/downloads/mysql/ 二.解压下载好的压缩包,本人存放的位置如下: 如下图解压后的文件目录,因版本的差异.一开始解压后的文件夹下可 ...