题目描述

给出1-n的两个排列P1和P2,求它们的最长公共子序列。

输入输出格式

输入格式:

第一行是一个数n,

接下来两行,每行为n个数,为自然数1-n的一个排列。

输出格式:

一个数,即最长公共子序列的长度

输入输出样例

输入样例#1: 复制

5
3 2 1 4 5
1 2 3 4 5
输出样例#1: 复制

3

说明

【数据规模】

对于50%的数据,n≤1000

对于100%的数据,n≤100000

****复杂度为nlogn哦,离散化,然后求最长上升序列

 #include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int i,j,n,a[],b[],ans,c[],f[];
int main()
{
scanf("%d",&n);
for(i = ;i <= n;i++)
{
scanf("%d",&a[i]);
c[a[i]] = i; //用于离散化
}
for(i = ;i <= n;i++)
{
scanf("%d",&b[i]);
f[i] = 0x7ffffff;
}
f[] = ;
ans = ;
for(i = ;i <= n;i++)
{
int l = ,r = ans,mid;
if(c[b[i]] > f[ans]) //求最大上升子序列
{
ans++;
f[ans] = c[b[i]];
}
else
{
while(l < r)
{
mid = (l + r) / ;
if(f[mid] > c[b[i]])
r = mid;
else
l = mid + ;
}
f[l] = min(f[l],c[b[i]]); // 求最大上升子序列长度为l时的最后一个值越小越好
}
}
printf("%d",ans);
return ;
}

洛谷P1439 【模板】最长公共子序列的更多相关文章

  1. 洛谷1439:最长公共子序列(nlogn做法)

    洛谷1439:最长公共子序列(nlogn做法) 题目描述: 给定两个序列求最长公共子序列. 这两个序列一定是\(1\)~\(n\)的全排列. 数据范围: \(1\leq n\leq 10^5\) 思路 ...

  2. 洛谷P2516 [HAOI2010]最长公共子序列(LCS,最短路)

    洛谷题目传送门 一进来就看到一个多月前秒了此题的ysn和YCB%%% 最长公共子序列的\(O(n^2)\)的求解,Dalao们想必都很熟悉了吧!不过蒟蒻突然发现,用网格图貌似可以很轻松地理解这个东东? ...

  3. 洛谷 P2516 [HAOI2010]最长公共子序列

    题目传送门 解题思路: 第一问要求最长公共子序列,直接套模板就好了. 第二问要求数量,ans[i][j]表示第一个字符串前i个字符,第二个字符串前j个字符的最长公共子序列的数量 如果f[i][j]是由 ...

  4. 洛谷P2516 [HAOI2010]最长公共子序列

    题目描述 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X="x0,x1,-,xm-1",序列Y=& ...

  5. 【Luogu P1439】最长公共子序列(LCS)

    Luogu P1439 令f[i][j]表示a的前i个元素与b的前j个元素的最长公共子序列 可以得到状态转移方程: if (a[i]==b[j]) dp[i][j]=dp[i-1][j-1]+1; d ...

  6. 洛谷 P4484 - [BJWC2018]最长上升子序列(状压 dp+打表)

    洛谷题面传送门 首先看到 LIS 我们可以想到它的 \(\infty\) 种求法(bushi),但是对于此题而言,既然题目出这样一个数据范围,硬要暴搜过去也不太现实,因此我们需想到用某种奇奇怪怪的方式 ...

  7. 【洛谷P4309】最长上升子序列

    题目大意:给定一个序列,初始为空.现在我们将 1 到 N 的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上升子序列长度是多少? 题解:学会了 rope 操 ...

  8. 洛谷 P1439 【模板】最长公共子序列

    \[传送门啦\] 题目描述 给出\(1-n\)的两个排列\(P1\)和\(P2\),求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数\(n\), 接下来两行,每行为\(n\)个数,为 ...

  9. 洛谷 P1439 【模板】最长公共子序列 题解

    每日一题 day40 打卡 Analysis 因为两个序列都是1~n 的全排列,那么两个序列元素互异且相同,也就是说只是位置不同罢了,那么我们通过一个book数组将A序列的数字在B序列中的位置表示出来 ...

随机推荐

  1. Anaconda安装出现Failed to create Anaconda menus错误及其解决

    我在自己的电脑上安装Anaconda3.6没有出现这个错误(win7系统),在公司的电脑(win10系统)上安装则出现了这个错误,且之前都已经安装了python3.6.需要使用如下方法解决: 安装时选 ...

  2. C语言输出

    转自:https://blog.csdn.net/u014647208/article/details/53337315 int PrintVal = 9; /*按整型输出,默认右对齐*/ print ...

  3. ansible-2.1.0.0_module

    ansible --version ansible 2.1.0.0 config file = /home/onest/luoliyu/ceph-ansible/ansible.cfg configu ...

  4. 解决ssh连接问题2

    ssh远程出现问题shell request failed on channel 0 1.修改/etc/security/limits.conf ssh_exchange_identification ...

  5. 【融云分析】如何实现分布式场景下唯一 ID 生成?

    ◀背景▶ 对于一套分布式部署的 IM 系统,要求每条消息的 ID 要保证在集群中全局唯一且按生成时间有序排列.如何快速高效的生成消息数据的唯一 ID ,是影响系统吞吐量的关键因素.那么,融云是如何做到 ...

  6. Cesium 学习笔记

    Entity API 1,和 fill属性不太一样,outline没有对应的材质配置,而是用两个独立的属性outlineColor和outlineWidth. 注意outlineWidth属性仅仅在非 ...

  7. Exp3 免杀原理与实践 20164303 景圣

    Exp3 免杀原理与实践 一.实验内容 1. 正确使用msf编码器,msfvenom生成如jar之类的其他文件,veil-evasion,自己利用shellcode编程等免杀工具或技巧 2. 通过组合 ...

  8. CSC 172 (Data Structures and Algorithms)

    Project #3 (STREET MAPPING)CSC 172 (Data Structures and Algorithms), Spring 2019,University of Roche ...

  9. CH 5102Mobile Service题解

    题目: 用动态规划很容易将完成任务量作为dp的阶段,通过指派服务员,从当前i-1个任务转移到i个任务: 我们可以用一个四维数组f[i][x][y][z]来表示在完成当前任务i时,三个机器人分别在x,y ...

  10. 20175307《Java程序设计》第5周学习总结

    教材内容总结 6.1  接口 1接口声明 接口使用关键字interface来进行声明 eg:interface  接口的名字 2接口体 接口体中包含常量的声明和抽象方法两部分(没有变量) 注意一定的要 ...