图融合之加载子图:Tensorflow.contrib.slim与tf.train.Saver之坑
import tensorflow as tf
import tensorflow.contrib.slim as slim import rawpy
import numpy as np
import tensorflow as tf
import struct
import glob
import os
from PIL import Image
import time __sony__ = 0
__huawei__ = 1
__blackberry__ = 2 __stage_raw2raw__ = 0
__stage_raw2rgb__ = 1
__stage_overall__ = 2 train_prefix = ''
valid_prefix = ''
test_prefix = '' # ============ CONFIGURATION ============
USE_GPU = False
if USE_GPU:
os.environ['CUDA_VISIBLE_DEVICES'] = ''
# change this to switch between datasets
source_id = __sony__ # switch between training stages
training_stage = __stage_raw2rgb__ # patch size should be set on running
patch_size = (512, 512)
#patch_size = (2840, 4248) # switch between training and validation
current_prefix = train_prefix # model saving settings
max_epoch = 2000
save_epoch_delay = 1
model_dir = './result_raw2raw/'
out_dir = './output_raw2raw/'
log_dir = './log_raw2raw/'
learn_rate = 1e-2
# ============ CONFIGURATION ============ if source_id == __blackberry__:
WHITE_LEVEL = 1023
BLACK_LEVEL = 64
HEIGHT = 3024
WIDTH = 4032
elif source_id == __sony__:
WHITE_LEVEL = 16383
BLACK_LEVEL = 512
HEIGHT = 2848
WIDTH = 4256
elif source_id == __huawei__:
WHITE_LEVEL = 1023
BLACK_LEVEL = 64
HEIGHT = 2976
WIDTH = 3968 if USE_GPU:
data_dir = '../see_in_the_dark/dataset/Sony_small/'
else:
data_dir = 'D:/data/Sony_small/' # !!!!!! DO NOT TOUCH THIS SETTING !!!!!!
fixed_size = (128, 128)
num_of_denoise_filter = 3
standard_brightness = 0.1
# !!!!!! DO NOT TOUCH THIS SETTING !!!!!! def has_nan_in_tensor(x):
return np.sum(x != x) > 0 def raw_from_file(path):
if source_id == __sony__:
data = rawpy.imread(path)
raw = data.raw_image_visible.astype(np.float32)
raw = raw.reshape(2848, 4256)
# convert from RGBG into standard GRGB format:
# cut the strips of left and right borders
h, w = raw.shape[0], raw.shape[1]
return np.reshape(raw[:, 1:w-1], [h, w-2, 1])
elif source_id == __huawei__:
data = rawpy.imread(path)
raw = data.raw_image_visible.astype(np.float32)
raw = raw.reshape(2976, 3968)
# convert from BGRG into standard GRGB format:
# cut the strips of top and bottom borders
h, w = raw.shape[0], raw.shape[1]
return np.reshape(raw[1:h-1, :], [h-2, w, 1])
elif source_id == __blackberry__:
data = open(path, 'rb').read()
data = struct.unpack('H'*int(len(data)/2), data)
raw = np.float32(data)
raw = raw.reshape(3024, 4032)
h, w = raw.shape[0], raw.shape[1]
return np.reshape(raw, [h, w, 1])
else:
assert False def rgb_from_file(path):
if source_id == __sony__:
raw = rawpy.imread(path)
rgb = np.float32(
raw.postprocess(
use_camera_wb=True,
half_size=False,
no_auto_bright=True,
output_bps=16
)
) / 65535.0
return rgb[:, 1:-1, :]
elif source_id == __huawei__:
raw = rawpy.imread(path)
rgb = np.float32(
raw.postprocess(
use_camera_wb=True,
half_size=False,
no_auto_bright=True,
output_bps=16
)
) / 65535.0
return rgb[1:-1, :, :]
else:
raise NameError('file type [%d] does not support rawpy!' % source_id) def black_level_correction(bayer):
with tf.name_scope('black_level_corr'):
r = 1.0/(WHITE_LEVEL-BLACK_LEVEL)
return tf.nn.relu((bayer - BLACK_LEVEL)*r) def bound(bayer):
return tf.minimum(tf.maximum(bayer, 0), 1) def bayer_to_rgb(bayer):
with tf.name_scope('bayer2rgb'):
filters = np.array([
[0.0, 1.0, 0.0, 0.0], # R
[0.5, 0.0, 0.0, 0.5], # (G1+G2)/2
[0.0, 0.0, 1.0, 0.0], # B
]).reshape([1, 3, 2, 2]).transpose([2, 3, 0, 1])
return tf.nn.conv2d(
bayer,
filters,
strides=(1, 2, 2, 1),
padding='VALID',
name='bayer_converter'
) def demosaic(rgb):
with tf.name_scope('demosaic'):
return tf.image.resize_bilinear(rgb, patch_size) def color_correction(rgb, color_matrix):
with tf.name_scope('color_corr'):
filters = tf.reshape(color_matrix, [1, 1, 3, 3])
return tf.nn.conv2d(rgb, filters, (1, 1, 1, 1), 'SAME', name='output') def min_max_normalize(rgb):
_min = tf.reduce_min(rgb)
_max = tf.reduce_max(rgb)
return (rgb - _min + 1e-8)/(_max - _min + 1e-8) def gaussian_norm(rgb):
_mean = tf.reduce_mean(rgb)
_vari = tf.sqrt(tf.reduce_mean(tf.square(rgb-_mean)))
return (rgb-_mean)/_vari # not supported on SNPE, so do it on cpu of mobile phone
# in case of negative value, normalize it before power operation
def gamma_correction(rgb, gamma):
with tf.name_scope('gamma_corr'):
return tf.pow(min_max_normalize(rgb), gamma) def lrelu(x):
return tf.maximum(x*0.2, x) def network_raw2raw(inputs):
with tf.name_scope('raw2raw'):
net = slim.conv2d(inputs, 32, [3, 3], rate=1, activation_fn=lrelu, weights_initializer=tf.initializers.constant,
scope='g_conv1')
net = slim.conv2d(net, 32, [3, 3], rate=2, activation_fn=lrelu, weights_initializer=tf.initializers.constant,
scope='g_conv2')
net = slim.conv2d(net, 32, [3, 3], rate=4, activation_fn=lrelu, weights_initializer=tf.initializers.constant,
scope='g_conv3')
net = slim.conv2d(net, 32, [3, 3], rate=8, activation_fn=lrelu, weights_initializer=tf.initializers.constant,
scope='g_conv4')
net = slim.conv2d(net, 32, [3, 3], rate=16, activation_fn=lrelu, weights_initializer=tf.initializers.constant,
scope='g_conv5')
net = slim.conv2d(net, 1, [1, 1], rate=1, activation_fn=None, scope='g_conv_last')
return net def show(rgb, title):
im = Image.fromarray(np.uint8(rgb * 255))
im.show(title) def save(rgb, path):
im = Image.fromarray(np.uint8(rgb * 255))
im.save(path) def concat(ims):
return np.concatenate(ims, axis=1) def get_color_matrix_and_gamma(bayer):
with tf.name_scope('isp_param_gen'):
with tf.name_scope('common_extractor'):
channels = tf.layers.conv2d(bayer, 3, kernel_size=3, strides=2, padding='valid')
activations = tf.nn.tanh(channels)
channels = tf.layers.conv2d(activations, 5, kernel_size=3, strides=2, padding='valid')
activations = tf.nn.relu(channels)
with tf.name_scope('color_matrix'):
channels_cm = tf.layers.conv2d(activations, 7, kernel_size=3, strides=2, padding='valid')
activations_cm = tf.nn.tanh(channels_cm)
channels_cm = tf.layers.conv2d(activations_cm, 5, kernel_size=3, strides=2, padding='valid')
channels_flat_cm = tf.reshape(
channels_cm,
[-1, channels_cm.shape[1]*channels_cm.shape[2]*channels_cm.shape[3]])
color_matrix = tf.reshape(tf.layers.dense(channels_flat_cm, 9), [3, 3])
with tf.name_scope('gamma'):
channels_gamma = tf.layers.conv2d(activations, 7, kernel_size=3, strides=2, padding='valid')
activations_gama = tf.nn.tanh(channels_gamma)
channels_gamma = tf.layers.conv2d(activations_gama, 5, kernel_size=3, strides=2, padding='valid')
channels_flat_gamma = tf.reshape(
channels_gamma,
[-1, channels_gamma.shape[1] * channels_gamma.shape[2] * channels_gamma.shape[3]])
gamma = tf.reshape(tf.maximum(tf.layers.dense(channels_flat_gamma, 1), 1e-3), [1])
return color_matrix, gamma def build_isp_process_flow(bayer, color_matrix, gamma):
with tf.name_scope('isp_flow'):
return gamma_correction(
color_correction(
demosaic(
bayer
), color_matrix
), gamma
) # in form of NHWC
def color_normalize(rgb):
return rgb/tf.expand_dims(tf.maximum(tf.reduce_sum(rgb, axis=3), 1e-7), axis=-1) def color_loss(rgb_out, rgb_gt):
return tf.reduce_mean(tf.abs(color_normalize(rgb_out) - color_normalize(rgb_gt))) # load images from files
gt_files = glob.glob(data_dir + '/long/' + current_prefix + '*.ARW')
in_files = [None]*len(gt_files) train_ids = [None] * len(gt_files)
gt_raws = [None] * len(train_ids)
gt_rgbs = [None] * len(train_ids)
in_raws = [None] * len(train_ids) # Reorganize the raw files according to their training id
for i in range(len(gt_files)):
if USE_GPU:
train_ids[i] = gt_files[i].split('/')[-1][1:5]
else:
train_ids[i] = gt_files[i].split('\\')[-1][1:5]
# for input files, multiple ones may relate to single ground truth file
in_files[i] = glob.glob(data_dir + '/short/' + current_prefix + train_ids[i] + '*.ARW')
in_raws[i] = [None]*len(in_files[i]) def get_gt_file_by_train_id(tid):
return gt_files[tid] def get_in_file_by_train_id_file_id(tid, fid):
return in_files[tid][fid] def get_patch_pair_raw_raw(raw_in, raw_gt):
h, w = raw_in.shape[0], raw_in.shape[1]
y, x = np.random.randint(0, h - patch_size[0]), np.random.randint(0, w - patch_size[1])
return (
np.expand_dims(raw_in[y:y + patch_size[0], x:x + patch_size[1], :], axis=0),
np.expand_dims(raw_gt[y:y + patch_size[0], x:x + patch_size[1], :], axis=0)
) def get_patch_pair_raw_rgb(raw, rgb):
h, w = raw.shape[0], raw.shape[1]
y, x = np.random.randint(0, h - patch_size[0]), np.random.randint(0, w - patch_size[1])
return (
np.expand_dims(raw[y:y + patch_size[0], x:x + patch_size[1], :], axis=0),
np.expand_dims(rgb[y:y + patch_size[0], x:x + patch_size[1], :], axis=0)
) def get_rand_patch_from_file_raw2rgb():
while True:
seq = np.random.permutation(len(train_ids))
for ind in seq:
if gt_rgbs[ind] is None:
# resource not found in cache, load it from disk
gt_file = get_gt_file_by_train_id(ind)
gt_rgb = rgb_from_file(gt_file)
fid = np.random.randint(0, len(in_files[ind]))
if in_raws[ind][fid] is None:
in_file = get_in_file_by_train_id_file_id(ind, fid)
in_raw = raw_from_file(in_file)
# cache them when using GPU on linux server since memory is sufficient
if USE_GPU:
gt_rgbs[ind] = gt_rgb
in_raws[ind][fid] = in_raw
yield get_patch_pair_raw_rgb(in_raw, gt_rgb) def get_rand_patch_from_file_raw2raw():
while True:
seq = np.random.permutation(len(train_ids))
for ind in seq:
if gt_raws[ind] is None:
# resource not found in cache, load it from disk
gt_file = get_gt_file_by_train_id(ind)
gt_raw = raw_from_file(gt_file)
fid = np.random.randint(0, len(in_files[ind]))
if in_raws[ind][fid] is None:
in_file = get_in_file_by_train_id_file_id(ind, fid)
in_raw = raw_from_file(in_file)
# cache them when using GPU on linux server since memory is sufficient
if USE_GPU:
in_raws[ind][fid] = in_raw
gt_raws[ind] = gt_raw
yield get_patch_pair_raw_rgb(in_raw, gt_raw) # basic nodes
t_bayer_in = tf.placeholder(dtype=tf.float32, shape=[None, None, None, 1], name='input')
t_bayer_gt = tf.placeholder(dtype=tf.float32, shape=[None, None, None, 1])
t_bayer_std = black_level_correction(t_bayer_in)
t_bayer_gt_std = black_level_correction(t_bayer_gt)
t_bayer_boosted = network_raw2raw(tf.minimum(300*t_bayer_std, 1.0)) t_half_rgb = bayer_to_rgb(t_bayer_std)
t_half_rgb_boosted = bayer_to_rgb(bound(t_bayer_boosted))
t_half_rgb_gt = bayer_to_rgb(t_bayer_gt_std)
t_half_rgb_resized = tf.image.resize_bilinear(t_half_rgb, fixed_size) t_rgb_gt = tf.placeholder(dtype=tf.float32, shape=[None, None, None, 3]) # ISP nodes
t_color_matrix, t_gamma = get_color_matrix_and_gamma(t_half_rgb_resized) # training raw2raw alone
# t_err_raw = tf.reduce_mean(tf.abs(t_half_rgb_gt - t_half_rgb_boosted))
t_err_raw = tf.reduce_mean(tf.abs(gaussian_norm(t_half_rgb_boosted) - gaussian_norm(t_half_rgb_gt))) # training raw2rgb alone
t_half_rgb_freeze = tf.stop_gradient(t_half_rgb_boosted)
t_rgb_freeze = build_isp_process_flow(t_half_rgb_freeze, t_color_matrix, t_gamma)
# t_err_rgb = tf.reduce_mean(tf.abs(t_rgb_gt - t_rgb_freeze))
t_err_rgb = color_loss(t_rgb_freeze, t_rgb_gt) + tf.abs(t_gamma[0] - 1.0/2.5)
# t_err_rgb = color_loss(t_rgb_freeze, t_rgb_gt) # training overall model
t_rgb_final = build_isp_process_flow(t_half_rgb_boosted, t_color_matrix, t_gamma)
# t_err_overall = tf.reduce_mean(tf.abs(t_rgb_gt - t_rgb_final))
t_err_overall = color_loss(t_rgb_final, t_rgb_gt) def clean_no_grad_vars(vs, gs):
vs_clear = []
gs_clear = []
for i in range(len(gs)):
if gs[i] is not None:
vs_clear.append(vs[i])
gs_clear.append(gs[i])
return vs_clear, gs_clear def make_var_grad_pairs(vs, gs):
return [(gs[i], vs[i]) for i in range(len(vs))] def train():
print('Staged training begins...')
t_opt = tf.train.GradientDescentOptimizer(learning_rate=learn_rate)
sess = tf.Session() t_minimizer_raw2raw = t_opt.minimize(t_err_raw)
t_minimizer_raw2rgb = t_opt.minimize(t_err_rgb)
t_minimizer_overall = t_opt.minimize(t_err_overall) # include = ['g_conv1', 'g_conv2', 'g_conv3', 'g_conv4', 'g_conv5', 'g_conv_last']
# variables_to_restore = slim.get_variables_to_restore(include=include) # saver = tf.train.Saver(variables_to_restore)
saver = tf.train.Saver(tf.global_variables())
sess.run(tf.global_variables_initializer()) # logger
if not os.path.exists(log_dir):
os.mkdir(log_dir)
logger = tf.summary.FileWriter(log_dir, graph=sess.graph)
t_sum_raw = tf.summary.scalar('raw2raw_loss', t_err_raw)
t_sum_rgb = tf.summary.scalar('raw2rgb_loss', t_err_rgb)
t_sum_all = tf.summary.scalar('overall_loss', t_err_overall) if not os.path.exists(os.path.join(model_dir, 'checkpoint')):
if not os.path.exists(model_dir):
os.mkdir(model_dir)
else:
print('Restoring model...')
model_name_prefix = 'model_checkpoint_path: "'
with open(os.path.join(model_dir + 'checkpoint')) as ckpt:
latest_id = ckpt.readline()[len(model_name_prefix):-2]
saver.restore(sess, os.path.join(model_dir, latest_id)) # bind saver to the full graph instead of a sub-graph
saver = tf.train.Saver(tf.global_variables()) # first stage: raw to raw training
if training_stage == __stage_raw2raw__:
print('Stage I: train to map input raw into ground truth raw')
patches = get_rand_patch_from_file_raw2raw()
counter = 0
t_start = time.clock()
for raw_in, raw_gt in patches:
_, err_raw2raw, sum_raw = sess.run(
[t_minimizer_raw2raw, t_err_raw, t_sum_raw],
feed_dict={
t_bayer_in: raw_in,
t_bayer_gt: raw_gt
}
) logger.add_summary(sum_raw, counter)
epoch = int(counter / len(train_ids))
print('Epoch# %d Counter# %d Loss= %.7f' % (epoch, counter, err_raw2raw))
counter += 1 if counter % 100 is 0:
t_stop = time.clock()
print('Speed: %.6f' % ((t_stop - t_start) / 100))
t_start = t_stop if counter > max_epoch * len(train_ids):
saver.save(sess, model_dir + '/' + str(epoch))
print('Training done.')
break
elif counter % (len(train_ids) * save_epoch_delay) is 0:
saver.save(sess, model_dir + '/' + str(epoch))
print('Model saved.')
# second stage: raw to rgb training
if training_stage == __stage_raw2rgb__:
print('Stage II: train to map generated raw into ground truth rgb') # gradient clip
# t_vs = tf.trainable_variables()
# t_gs = tf.gradients(t_err_rgb, t_vs)
# t_vs, t_gs = clean_no_grad_vars(t_vs, t_gs)
# t_var_grad_pairs = make_var_grad_pairs(t_vs, t_gs)
# t_minimizer_raw2rgb = t_opt.apply_gradients(t_var_grad_pairs) patches = get_rand_patch_from_file_raw2rgb()
counter = 0
t_start = time.clock()
for raw_in, rgb_gt in patches:
_, err_raw2rgb, sum_rgb, gamma = sess.run(
[t_minimizer_raw2rgb, t_err_rgb, t_sum_rgb, t_gamma],
feed_dict={
t_bayer_in: raw_in,
t_rgb_gt: rgb_gt
}
) # _, err_raw2rgb, grads, sum_rgb, gamma = sess.run(
# [t_minimizer_raw2rgb, t_err_rgb, t_gs, t_sum_rgb, t_gamma],
# feed_dict={
# t_bayer_in: raw_in,
# t_rgb_gt: rgb_gt
# }
# ) logger.add_summary(sum_rgb, counter)
epoch = int(counter / len(train_ids))
print('Epoch# %d Counter# %d Loss= %.7f Gamma=%.6f' % (epoch, counter, err_raw2rgb, 1.0 / gamma)) # Gradient check
# for i in range(len(grads)):
# if has_nan_in_tensor(grads[i]):
# print('Nan value found in gradient: %s!' % t_gs[i].name) counter += 1
if counter % 100 is 0:
t_stop = time.clock()
print('Speed: %.6f' % ((t_stop - t_start) / 100))
t_start = t_stop if counter > max_epoch * len(train_ids):
saver.save(sess, model_dir + '/' + str(epoch))
print('Training done.')
elif counter % (len(train_ids) * save_epoch_delay) is 0:
saver.save(sess, model_dir + '/' + str(epoch))
print('Model saved.')
# second stage: overall training
if training_stage == __stage_overall__:
print('Stage III: train to map input raw into ground truth rgb')
patches = get_rand_patch_from_file_raw2rgb()
counter = 0
t_start = time.clock()
for raw_in, rgb_gt in patches:
_, err_overall, sum_all = sess.run(
[t_minimizer_overall, t_err_overall, t_sum_all],
feed_dict={
t_bayer_in: raw_in,
t_rgb_gt: rgb_gt
}
) logger.add_summary(sum_all, counter)
epoch = int(counter / len(train_ids))
print('Epoch# %d Counter# %d Loss= %.7f' % (epoch, counter, err_overall))
counter += 1
if counter % 100 is 0:
t_stop = time.clock()
print('Speed: %.6f' % ((t_stop - t_start) / 100))
t_start = t_stop if counter > max_epoch * len(train_ids):
saver.save(sess, model_dir + '/' + str(epoch))
print('Training done.')
elif counter % (len(train_ids) * save_epoch_delay) is 0:
saver.save(sess, model_dir + '/' + str(epoch))
print('Model saved.')
# finalization
logger.close()
sess.close() def test_half_rgb():
print('Testing Half RGB reconstruction...')
sess = tf.Session() t_vars = tf.global_variables() # var_names = []
# for v in t_vars:
# var_names.append(v.name)
# print(v.name) saver = tf.train.Saver(t_vars) if not os.path.exists(model_dir):
assert 'path not found!'
model_name_prefix = 'model_checkpoint_path: "'
with open(os.path.join(model_dir, 'checkpoint')) as ckpt:
latest_id = ckpt.readline()[len(model_name_prefix):-2]
saver.restore(sess, os.path.join(model_dir, latest_id))
print('Model loaded.') if not os.path.exists(out_dir):
os.mkdir(out_dir) patches = get_rand_patch_from_file_raw2raw()
counter = 0 for raw_in, raw_gt in patches:
half_rgb_boosted, half_rgb_gt = sess.run(
[t_half_rgb_boosted, t_half_rgb_gt],
feed_dict={
t_bayer_in: raw_in,
t_bayer_gt: raw_gt
}
)
im_cmp = concat((half_rgb_boosted[0], half_rgb_gt[0]))
# show(im_cmp, str(counter))
save(im_cmp, (out_dir + '/HALF_%04d.jpg') % counter)
counter += 1
if counter >= 20:
break if __name__ == '__main__':
# test_half_rgb()
train()
1.先说tf.train.Saver()的坑,这个比较严重,其损失是不可挽回的!!!
由于经常需要迁移学习,需要执行图融合的操作,于是,需要先加载一部分子图然后创建另一部分子图,训练完后保存整个模型。
问题是:直接采用tf.train.Saver()的话,等效于saver = tf.train.Saver(tf.global_variables())
在加载子图的时候会报错:因为在子图的checkpoint文件中找不到新创建的子图中的算子,因此需要特别指定要回复的算子,而不是采用tf.global_variables()。
于是将tf.global_variables()这个替换掉,方案有两种:
1.直接利用name的prefix进行变量过滤,即对tf.global_variables()得到的变量列表中的部分变量根据其v.name进行剔除,剩下的就是需要加载的变量。
2.采用tf.contrib.slim直接获取要加载的变量列表,然而这里出现了一个坑:
slim.get_variables_to_restore(include=include) 中 include 是一个name list,采用正则进行名字匹配,原理是:if v.name.startswith('VAR_NAME_PREFIX'): ADD_TO_LIST(ret)
于是当你的include list中有conv2d这个变量名称前缀时,所有的conv2d_xxx都会被自动添加到列表中,而且,SLIM很傻逼的不进行查重检查!!!于是你得到的var_list中将会出现重复的
变量,导致加载模型时报错:at least two of variables have the same name : conv2d_1/bias !!!
填坑完毕!
创建saver一定要指定要加载的变量列表,不然不知不觉的可能导致辛辛苦苦训练好的变量(参数)最终没有保存,永远的在结束训练时的内存中消亡了~~~~~
图融合之加载子图:Tensorflow.contrib.slim与tf.train.Saver之坑的更多相关文章
- 机器学习与Tensorflow(7)——tf.train.Saver()、inception-v3的应用
1. tf.train.Saver() tf.train.Saver()是一个类,提供了变量.模型(也称图Graph)的保存和恢复模型方法. TensorFlow是通过构造Graph的方式进行深度学习 ...
- tensorflow 模型保存与加载 和TensorFlow serving + grpc + docker项目部署
TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接 ...
- iOS最笨的办法实现无限轮播图(网络加载)
iOS最笨的办法实现无限轮播图(网络加载) 简单的做了一下: 使用方法: 把 请求返回的 图片地址(字符串类型)放进数组中就行 可以使用SDWebImage(我就是用的这个)等..需要自己导入并引用, ...
- 跟我学算法- tensorflow模型的保存与读取 tf.train.Saver()
save = tf.train.Saver() 通过save. save() 实现数据的加载 通过save.restore() 实现数据的导出 第一步: 数据的载入 import tensorflo ...
- Tensorflow滑动平均模型tf.train.ExponentialMovingAverage解析
觉得有用的话,欢迎一起讨论相互学习~Follow Me 移动平均法相关知识 移动平均法又称滑动平均法.滑动平均模型法(Moving average,MA) 什么是移动平均法 移动平均法是用一组最近的实 ...
- TensorFlow:tf.train.Saver()模型保存与恢复
1.保存 将训练好的模型参数保存起来,以便以后进行验证或测试.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf.train.S ...
- tensorflow的tf.train.Saver()模型保存与恢复
将训练好的模型参数保存起来,以便以后进行验证或测试.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf.train.Saver( ...
- TensorFlow Saver 保存最佳模型 tf.train.Saver Save Best Model
TensorFlow Saver 保存最佳模型 tf.train.Saver Save Best Model Checkmate is designed to be a simple drop-i ...
- layui 页面加载完成后ajax重新为 html 赋值 遇到的坑
页面加载完毕后,通过 ajax 按照返回值,为部分 html 赋值: $(function(){ ..... }) 直接这样写,报错,$ 没有定义什么的,错位原因为 jquery 引入错误. layu ...
随机推荐
- SQL kaggle learn : WHERE AND
WHERE trip_start_timestamp Between '2017-01-01' And '2017-07-01' and trip_seconds > 0 and trip_mi ...
- Angular4 表单处理
- 【转】完美解决Python与anaconda之间的冲突问题
本文转自:https://blog.csdn.net/sinat_41898105/article/details/80660332 anaconda指的是一个开源的Python发行版本,其包含了co ...
- CCF CSP 201809-2 买菜
题目链接:http://118.190.20.162/view.page?gpid=T78 问题描述 小H和小W来到了一条街上,两人分开买菜,他们买菜的过程可以描述为,去店里买一些菜然后去旁边的一个广 ...
- 安装mysql5.6
1.创建一个不能登录的的用户: 2.下载一个数据库包: wget 下载网址 3.安装相关依赖包: yum -y install make gcc-c++ cmake bison-devel ncurs ...
- ORA-00338
dg环境从库报错:ORA-00338: log 5 of thread 1 is more recent than control fileORA-00312: online log 5 thread ...
- opencv学习之路(33)、SIFT特征点提取(一)
一.简介 二.OpenCV中的SIFT算法接口 #include "opencv2/opencv.hpp" #include <opencv2/nonfree/nonfree ...
- 标定版制作(棋盘、圆点、aruco等)
标定板这个东西,对于双目.立体视觉来说那都是必须的.我们这里提供一些做好的标定板,也提供制作标定板的制作方法 一.基本制作思路(以棋盘标定板为例) 1. “插入” - “表格” 根据提示选择多少行乘 ...
- Java基础实训2
1. 一维数组的创建和遍历. 声明并创建存放4个人考试成绩的一维数组,并使用for循环遍历数组并打印分数.要求: (1) 首先按“顺序”遍历,即打印顺序为:从第一个人到第四个人: (2) ...
- 【转载】系统吞吐量(TPS)、用户并发量、性能测试概念和公式
系统吞度量要素 一个系统的吞度量(承压能力)与request对CPU的消耗.外部接口.IO等等紧密关联.单个reqeust 对CPU消耗越高,外部系统接口.IO影响速度越慢,系统吞吐能力越低,反之越高 ...