内存资源紧张时,可能导致的结果

(1)OOM 杀死大内存CPU利用率又低的进程(系统内存耗尽的情况下才生效:OOM 触发的时机是基于虚拟内存,即进程在申请内存时,如果申请的虚拟内存加上服务器实际已用的内存之和,比总的物理内存还大,就会触发 OOM);

(2)回收内存

  • 1 )回收文件页(File-backed Page)。有两种:

      第一种,回收Buffer和Cache。大部分文件页直接回收,以后有需要时,再从磁盘重新读取,脏页先写入磁盘后释放内存。脏页可以通过两种方式写入磁盘:在应用程序中可以通过系统调用 fsync ,把脏页同步到磁盘中;也可以交给系统,由内核线程 pdflush 负责这些脏页的刷新。

      第二种,回收通过内存映射获取的文件映射页。可以先被释放掉,下次再访问的时候,从文件重新读取。
  • 2 )回收匿名页(Anonymous Page,应用程序动态分配的堆内存)。Linux 的 Swap 机制,把一些不常访问的内存先写到磁盘中,然后释放这些内存,给其他更需要的进程使用,再次访问这些内存时,重新从磁盘读入内存。

回收内存的方式

(1)直接内存回收,比如回收Buffer和Cache,回收通过内存映射获取的文件映射页。

(2)定期回收内存,有一个专门的内核线程 kswapd0 定期回收内存。不仅回收文件页,还有匿名页。但 Swap 中只有匿名页。

为了衡量内存的使用情况,kswapd0 定义了三个内存阈值,分别是页最小阈值(pages_min)、页低阈值(pages_low)和页高阈值(pages_high)。剩余内存,则使用 pages_free 表示。

  

  • 剩余内存小于页最小阈值,说明进程可用内存都耗尽了,只有内核才可以分配内存。
  • 剩余内存落在页最小阈值和页低阈值中间,说明内存压力比较大,剩余内存不多了。这时 kswapd0 会执行内存回收,直到剩余内存大于高阈值为止。可以通过内核选项 /proc/sys/vm/min_free_kbytes 来间接设置,并且其他两个阈值,也根据页最小阈值计算得到:pages_low = pages_min5/4;pages_high = pages_min3/2
  • 剩余内存落在页低阈值和页高阈值中间,说明内存有一定压力,但还可以满足新内存请求。
  • 剩余内存大于页高阈值,说明剩余内存比较多,没有内存压力。

通过 /proc/zoneinfo查看系统memory情况:

$ cat /proc/zoneinfo
...
Node 0, zone Normal
pages free 227894
min 14896
low 18620
high 22344
...
nr_free_pages 227894
nr_zone_inactive_anon 11082
nr_zone_active_anon 14024
nr_zone_inactive_file 539024
nr_zone_active_file 923986
...
  • pages 处的 min、low、high,就是上面提到的三个内存阈值,而 free 是剩余内存页数,它跟后面的 nr_free_pages 相同。
  • nr_zone_active_anon 和 nr_zone_inactive_anon,分别是活跃和非活跃的匿名页数。
  • nr_zone_active_file 和 nr_zone_inactive_file,分别是活跃和非活跃的文件页数。

Swap 原理

  Swap 把一块磁盘空间或者一个本地文件,当成内存来使用。它包括换出和换入两个过程:

  • 换出,就是把进程暂时不用的内存数据存储到磁盘中,并释放这些数据占用的内存。
  • 换入,则是在进程再次访问这些内存的时候,把它们从磁盘读到内存中来。

应用场景

(1)当内存不足时,有些应用程序也并不想被 OOM 杀死,而是希望能缓一段时间,等待人工介入,或者等系统自动释放其他进程的内存,再分配给它。

(2)我们常见的笔记本电脑的休眠和快速开机的功能,也基于 Swap 。休眠时,把系统的内存存入磁盘,这样等到再次开机时,只要从磁盘中加载内存就可以。这样就省去了很多应用程序的初始化过程,加快了开机速度。

NUMA 与 Swap

  

  在 NUMA 架构下,多个处理器被划分到不同 Node 上,且每个 Node 都拥有自己的本地内存空间。而同一个 Node 内部的内存空间,实际上又可以进一步分为不同的内存域(Zone),比如直接内存访问区(DMA)、普通内存区(NORMAL)、伪内存区(MOVABLE)等:

$ numactl --hardware
available: 1 nodes (0)
node 0 cpus: 0 1
node 0 size: 7977 MB
node 0 free: 4416 MB
...

  当某个 Node 内存不足时,系统可以从其他 Node 寻找空闲内存,也可以从本地内存中回收内存。具体选哪种模式,你可以通过 /proc/sys/vm/zone_reclaim_mode 来调整。它支持以下几个选项:

  • 默认的 0 ,也就是刚刚提到的模式,表示既可以从其他 Node 寻找空闲内存,也可以从本地回收内存。
  • 1、2、4 都表示只回收本地内存,2 表示可以回写脏数据回收内存,4 表示可以用 Swap 方式回收内存。

swappiness

内存回收的机制有两种:

(1)对文件页的回收,当然就是直接回收缓存,或者把脏页写回磁盘后再回收。

(2)对匿名页的回收,其实就是通过 Swap 机制,把它们写入磁盘后再释放内存。

  在实际回收内存时,到底该先回收哪一种呢?

  Linux 提供了一个 /proc/sys/vm/swappiness 选项,用来调整使用 Swap 的积极程度。swappiness 的范围是 0-100,数值越大,越积极使用 Swap,也就是更倾向于回收匿名页;数值越小,越消极使用 Swap,也就是更倾向于回收文件页。

  不过要注意,这并不是内存的百分比,而是调整 Swap 积极程度的权重,即使你把它设置成 0,当剩余内存 + 文件页小于页高阈值时,还是会发生 Swap

案例

  通过 sar 可以观察系统 memory 和 swap 使用情况的变化:

# -r 表示显示内存使用情况,-S 表示显示 Swap 使用情况,间隔 1 秒输出一组数据
$ apt install sysstat
$ sar -r -S 1
04:39:56 kbmemfree kbavail kbmemused %memused kbbuffers kbcached kbcommit %commit kbactive kbinact kbdirty
04:39:57 6249676 6839824 1919632 23.50 740512 67316 1691736 10.22 815156 841868 4 04:39:56 kbswpfree kbswpused %swpused kbswpcad %swpcad
04:39:57 8388604 0 0.00 0 0.00 04:39:57 kbmemfree kbavail kbmemused %memused kbbuffers kbcached kbcommit %commit kbactive kbinact kbdirty
04:39:58 6184472 6807064 1984836 24.30 772768 67380 1691736 10.22 847932 874224 20 04:39:57 kbswpfree kbswpused %swpused kbswpcad %swpcad
04:39:58 8388604 0 0.00 0 0.00 … 04:44:06 kbmemfree kbavail kbmemused %memused kbbuffers kbcached kbcommit %commit kbactive kbinact kbdirty
04:44:07 152780 6525716 8016528 98.13 6530440 51316 1691736 10.22 867124 6869332 0 04:44:06 kbswpfree kbswpused %swpused kbswpcad %swpcad
04:44:07 8384508 4096 0.05 52 1.27
  • kbcommit,表示当前系统负载需要的内存。它实际上是为了保证系统内存不溢出,对需要内存的估计值。%commit,就是这个值相对总内存的百分比。
  • kbactive,表示活跃内存,也就是最近使用过的内存,一般不会被系统回收。
  • kbinact,表示非活跃内存,也就是不常访问的内存,有可能会被系统回收。

观察得到:

(1)kbmemfree 减少、kbbuffers 增大,说明剩余内存不断分配给了缓冲区;

(2)一段时间后,剩余内存已经很小,而缓冲区占用了大部分内存。这时候,Swap 的使用开始逐渐增大,缓冲区和剩余内存则只在小范围内波动。

  如何解释以上过程?

  通过 cachetop 可以观察系统 cache 当前的情况:

$ cachetop 5
12:28:28 Buffers MB: 6349 / Cached MB: 87 / Sort: HITS / Order: ascending
PID UID CMD HITS MISSES DIRTIES READ_HIT% WRITE_HIT%
18280 root python 22 0 0 100.0% 0.0%
18279 root dd 41088 41022 0 50.0% 50.0%

  可以看到,dd 进程的读写请求只有 50% 的命中率,这是导致缓冲区使用升高的原因。

  通过 /proc/zoneinfo 查看系统 memory 情况:

# -A 表示仅显示 Normal 行以及之后的 15 行输出
$ watch -d grep -A 15 'Normal' /proc/zoneinfo
Node 0, zone Normal
pages free 21328
min 14896
low 18620
high 22344
spanned 1835008
present 1835008
managed 1796710
protection: (0, 0, 0, 0, 0)
nr_free_pages 21328
nr_zone_inactive_anon 79776
nr_zone_active_anon 206854
nr_zone_inactive_file 918561
nr_zone_active_file 496695
nr_zone_unevictable 2251
nr_zone_write_pending 0
  • 当剩余内存小于页低阈值 ( pages_low ) 时,系统会回收一些缓存和匿名内存,使剩余内存增大。其中,缓存的回收导致 sar 中的缓冲区减小,而匿名内存的回收导致了 Swap 的使用增大。
  • 紧接着,由于 dd 还在继续,剩余内存又会重新分配给缓存,导致剩余内存减少,缓冲区增大。
  • 由于 swappiness 的设置,系统会选择合适的回收类型进行回收。

通过 /proc/pid/status 中的 VmSwap 可以查看每个进程 Swap 换出的虚拟内存大小。

# 按 VmSwap 使用量对进程排序,输出进程名称、进程 ID 以及 SWAP 用量
$ for file in /proc/*/status ; do awk '/VmSwap|Name|^Pid/{printf $2 " " $3}END{ print ""}' $file; done | sort -k 3 -n -r | head $ smem --sort swap # 另一个命令,按照swap使用量排序
$ swapoff -a  # 关闭 Swap

降低 Swap 的使用,可以提高系统的整体性能,方法:

(1)禁止 Swap,现在服务器的内存足够大,所以除非有必要,禁用 Swap 就可以了。随着云计算的普及,大部分云平台中的虚拟机都默认禁止 Swap。

(2)如果实在需要用到 Swap,可以尝试降低 swappiness 的值,减少内存回收时 Swap 的使用倾向。

(3)响应延迟敏感的应用,如果它们可能在开启 Swap 的服务器中运行,你还可以用库函数 mlock() 或者 mlockall() 锁定内存,阻止它们的内存换出。

Linux性能优化从入门到实战:12 内存篇:Swap 基础的更多相关文章

  1. Linux性能优化从入门到实战:01 Linux性能优化学习路线

      我通过阅读各种相关书籍,从操作系统原理.到 Linux内核,再到硬件驱动程序等等.   把观察到的性能问题跟系统原理关联起来,特别是把系统从应用程序.库函数.系统调用.再到内核和硬件等不同的层级贯 ...

  2. Linux性能优化从入门到实战:16 文件系统篇:总结磁盘I/O指标/工具、问题定位和调优

    (1)磁盘 I/O 性能指标 文件系统和磁盘 I/O 指标对应的工具 文件系统和磁盘 I/O 工具对应的指标 (2)磁盘 I/O 问题定位分析思路 (3)I/O 性能优化思路 Step 1:首先采用 ...

  3. Linux性能优化从入门到实战:07 CPU篇:CPU性能优化方法

    性能优化方法论   动手优化性能之前,需要明确以下三个问题:   (1)如何评估性能优化的效果? 确定性能的量化指标.测试优化前的性能指标.测试优化后的性能指标.   量化指标的选择.至少要从应用程序 ...

  4. Linux性能优化从入门到实战:09 内存篇:Buffer和Cache

      Buffer 是缓冲区,而 Cache 是缓存,两者都是数据在内存中的临时存储.   避免跟文中的"缓存"一词混淆,而文中的"缓存",则通指内存中的临时存储 ...

  5. Linux性能优化从入门到实战:08 内存篇:内存基础

    内存主要用来存储系统和应用程序的指令.数据.缓存等. 内存映射   物理内存也称为主存,动态随机访问内存(DRAM).只有内核才可以直接访问物理内存.   Linux 内核给每个进程都提供了一个独立的 ...

  6. Linux性能优化从入门到实战:17 网络篇:网络基础

    网络模型 为了解决网络互联中异构设备的兼容性问题,并解耦复杂的网络包处理流程,国际标准化组织制定了开放式系统互联通信参考模型(Open System Interconnection Reference ...

  7. Linux性能优化从入门到实战:03 CPU篇:CPU上下文切换

      linux操作系统是将CPU轮流分配给任务,分时执行的.而每次执行任务时,CPU需要知道CPU寄存器(CPU内置的内存)和程序计数器PC(CPU正在执行指令和下一条指令的位置)值,这些值是CPU执 ...

  8. Linux性能优化从入门到实战:15 文件系统篇:磁盘 I/O

    磁盘   磁盘是可以持久化存储的设备,按照存储介质来分类:   (1)机械磁盘(硬盘驱动器,Hard Disk Driver,HDD),主要由盘片和读写磁头组成,数据就存储在盘片的环状磁道中.在读写数 ...

  9. Linux性能优化从入门到实战:10 内存篇:如何利用Buffer和Cache优化程序的运行效率?

    缓存命中率   缓存命中率,是指直接通过缓存获取数据的请求次数,占所有数据请求次数的百分比,可以衡量缓存使用的好坏.命中率越高,表示使用缓存带来的收益越高,应用程序的性能也就越好.   实际上,缓存是 ...

随机推荐

  1. sh_01_hello

    sh_01_hello print("hello python") print("你好世界")

  2. 【BZOJ2200】道路和航线(并查集,拓扑排序,最短路)

    题意:n个点,有m1条双向边,m2条单向边,双向边边长非负,单向边可能为负 保证如果有一条从x到y的单项边,则不可能存在从y到x的路径 问从S出发到其他所有点的最短路 n<=25000,n1,m ...

  3. SpringCloud 教程 (七)服务注册(consul)

    一.consul 简介 consul 具有以下性质: 服务发现:consul通过http 方式注册服务,并且服务与服务之间相互感应. 服务健康监测 key/value 存储 多数据中心 consul可 ...

  4. 使用@Test报java.lang.NullPointerException at org.eclipse.jdt.internal.junit4.runner.SubForestFilter.shouldRun(SubForestFilter.java:81)异常

    对公司的项目进行二次开发时,在调试过程中用到@Test注解,运行使发现控制台报空指针异常,如图: 参考网上相应资料后,删除项目中自带的Junit4.jar,然后使用eclipse开发工具自带的Juni ...

  5. 深入理解BFC和IFC

    1. 为什么会有BFC和IFC 首先要先了解两个概念:Box和formatting context: Box:CSS渲染的时候是以Box作为渲染的基本单位.Box的类型由元素的类型和display属性 ...

  6. js方法返回多值如何取值demo

    js方法返回,如何取值?下面demo两种方法 new array 和 json 返回值 取值示例. 方法一:  new array <html> <head> <meta ...

  7. 高级软件测试技术(测试管理工具实践day1)

    今天进行了班级内部各小组选择测试工具,选择各自需要进行测试管理工具.我们小组暂定选择 禅道 但是班级内其他小组选择的工具还没确定,还没进行

  8. 线性中继器 Linear Repeater

     线性中继器(Linear Repeater,缩写L-REP) 高速信号在传输介质上传递时,信号衰减和噪声会导致有效数据信号越来越弱.L-REP就是用来再生高速信号,通过使用同等化(Equalizat ...

  9. Linux函数的使用方法

    [root@a ~]#cat fun.txt #定义函数库文件,方便在别的地方使用 addnum1() { echo $[$1+$2] } addnum2(){ echo $[$1*$2] } del ...

  10. vue-methods方法与computed计算属性的差别

    好吧,我就是单纯的举个例子:实现显示变量 message 的翻转字符串 第一种:methods:我们可以通过在表达式中调用方法来达到同样的效果: 第二种:computed:计算属性 上面的2中方法都实 ...