AcWing 217. 绿豆蛙的归宿 (概率期望+拓扑排序)打卡
给出一个有向无环的连通图,起点为1,终点为N,每条边都有一个长度。
数据保证从起点出发能够到达图中所有的点,图中所有的点也都能够到达终点。
绿豆蛙从起点出发,走向终点。
到达每一个顶点时,如果有K条离开该点的道路,绿豆蛙可以选择任意一条道路离开该点,并且走向每条路的概率为 1/K 。
现在绿豆蛙想知道,从起点走到终点所经过的路径总长度的期望是多少?
输入格式
第一行: 两个整数 N, M,代表图中有N个点、M条边。
第二行到第 1+M 行: 每行3个整数 a, b, c,代表从a到b有一条长度为c的有向边。
输出格式
输出从起点到终点路径总长度的期望值,结果四舍五入保留两位小数。
数据范围
1≤N≤1051≤N≤105,
1≤M≤2N1≤M≤2N
输入样例:
4 4
1 2 1
1 3 2
2 3 3
3 4 4
输出样例:
7.00
题意:起点为1,终点为n,在这个有向图上求1-n的路径长度的期望,每个点的分支是K条,那么这k条走到的概率为1/k
思路:首先我们计算的时候,因为当前点的相邻边是k条,那么每条的概率为1/k,那么路径就是1/k*(当前边长),我们可以发现当前点是由前驱的概率传过来的,我们可以计算出到每个点的概率是多少
然后再去乘当前边长度,这样点与点互相传递即可,然后我们知道具体思路后,可以转化一个dp
f[x]代表当前点到终点的期望长度,然后可以推导f[x]=1/k累加(1-k)(f[y]+边长)
f[1]即为所求答案
#include<bits/stdc++.h>
#define maxn 100005
#define mod 1000000007
using namespace std;
typedef long long ll;
ll n,m;
ll d[maxn+];
ll deg[maxn+];
double f[maxn+];
vector<pair<ll,ll> > mp[maxn+];
ll x,y,z;
int main(){
cin>>n>>m;
for(int i=;i<m;i++){
cin>>x>>y>>z;
mp[y].push_back(make_pair(x,z));
d[x]++;
deg[x]++;
}
queue<ll> q;
q.push(n);
while(!q.empty()){
ll w=q.front();
q.pop();
for(int i=;i<mp[w].size();i++){
pair<ll,ll> v=mp[w][i];
f[v.first]+=(double)(f[w]+v.second)/deg[v.first];
if(--d[v.first]==){
q.push(v.first);
}
}
}
printf("%.2lf",f[]);
}
/*
4 4
1 2 1
1 3 2
2 3 3
3 4 4
*/
AcWing 217. 绿豆蛙的归宿 (概率期望+拓扑排序)打卡的更多相关文章
- P4316 绿豆蛙的归宿(期望)
P4316 绿豆蛙的归宿 因为非要用bfs所以稍微麻烦一点qwq(大家用的都是dfs) 其实问题让我们求的就是经过每条边的概率*边权之和 我们可以用bfs把图遍历一遍处理概率,顺便把每条边的概率*边权 ...
- 【BZOJ3036】绿豆蛙的归宿 概率与期望
最水的概率期望,推荐算法合集之<浅析竞赛中一类数学期望问题的解决方法> #include <iostream> #include <cstdio> using na ...
- 【题解】 bzoj3036: 绿豆蛙的归宿 (期望dp)
题面戳我 Solution 反向建图跑拓扑排序,顺便处理\(dp\) 假设某条边是\(u \rightarrow v (dis)\) ,那么转移方程就是\(dp[v]+=(dp[u]+dis)/in[ ...
- 【BZOJ3036】绿豆蛙的归宿 概率DP
链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...
- bzoj3036: 绿豆蛙的归宿(期望DP)
刷水反被水题日,拓扑写炸WA了2发T T... 因为是DAG图,可以直接递推,不需要高斯消元 #include<iostream> #include<cstring> #inc ...
- 【BZOJ3036】绿豆蛙的归宿 拓补排序+概率
[BZOJ3036]绿豆蛙的归宿 Description 随着新版百度空间的下线,Blog宠物绿豆蛙完成了它的使命,去寻找它新的归宿. 给出一个有向无环的连通图,起点为1终点为N,每条边都有一个长度. ...
- BZOJ 3036: 绿豆蛙的归宿( 期望dp )
从终点往起点倒推 . 在一个图 考虑点 u , 出度为 s : s = 0 , d[ u ] = 0 ; s ≠ 0 , 则 d( u ) = ( ∑ d( v ) ) / s ( ( u , v ) ...
- 【BZOJ 3036】 3036: 绿豆蛙的归宿 (概率DP)
3036: 绿豆蛙的归宿 Time Limit: 2 Sec Memory Limit: 128 MBSubmit: 491 Solved: 354 Description 随着新版百度空间的下线 ...
- 1065. [Nescafe19] 绿豆蛙的归宿(概率)
1065. [Nescafe19] 绿豆蛙的归宿 ★ 输入文件:ldfrog.in 输出文件:ldfrog.out 简单对比时间限制:1 s 内存限制:128 MB [背景] 随着新版 ...
随机推荐
- javascript is ths best computer language
alert('javascript is one of the best computer languages')
- ID3,C4.5和CART三种决策树的区别
ID3决策树优先选择信息增益大的属性来对样本进行划分,但是这样的分裂节点方法有一个很大的缺点,当一个属性可取值数目较多时,可能在这个属性对应值下的样本只有一个或者很少个,此时它的信息增益将很高,ID3 ...
- C# webbrowser专题
C# .Net 2.0实例学习:WebBrowser页面与WinForm交互技巧 2 Study Case :高亮显示 上一个例子中我们学会了查找文本——究跟到底,对Web页面还是只读不写.那么,如果 ...
- java并发编程笔记(六)——AQS
java并发编程笔记(六)--AQS 使用了Node实现FIFO(first in first out)队列,可以用于构建锁或者其他同步装置的基础框架 利用了一个int类型表示状态 使用方法是继承 子 ...
- CSS-美化checkbox
注意:css3 的用: checked 伪类选择器会去检查元素属性(`input[checked]`),而不是 dom 节点上的属性( ``).所以要使用 jquery 的 prop 而非 attr ...
- spring boot 尚桂谷学习笔记05 ---Web
------web 开发登录功能------ 修改login.html文件:注意加粗部分为 msg 字符串不为空时候 才进行显示 <!DOCTYPE html> <!-- saved ...
- Ubuntu解压缩rar格式文件
解压缩rar文件时,出现问题 解决方法: sudo apt-get install unrar
- Flask+elasticsearch实现搜索引擎入门教程+Curl调试
前几天,在github上看到了一个关于elasticsearch的小项目,有点小兴趣,于是就结合着Flask,研究了一下,分享给大家. 准备资料: 1.安装elasticsearch 参考教程:htt ...
- 关于UITableViewAutomaticDimension的产生的bug
一.下面这句代码要想有作用 在iOS11之前需要适配,两个代理都需要实现 - (CGFloat)tableView:(UITableView *)tableView heightForHeader ...
- Android中Parcelable的原理和使用方法
Parcelable的简单介绍 介绍Parcelable不得不先提一下Serializable接口,Serializable是Java为我们提供的一个标准化的序列化接口,那什么是序列化呢? 进行And ...