Linux启动过程的内核代码分析
参考上文:
http://www.cnblogs.com/long123king/p/3543872.html
http://www.cnblogs.com/long123king/p/3545688.html
补充:linker script documentation
http://www.nacad.ufrj.br/online/sgi/860-0247-001/sgi_html/ldLinker_scripts.html
参考:http://blog.chinaunix.net/uid-20499746-id-1663135.html
http://blog.csdn.net/redredbird/article/details/5986035
同类文章参考:
http://blog.chinaunix.net/uid-1701789-id-148056.html
http://www.cnblogs.com/cybertitan/archive/2012/09/29/2708184.html
1. 内核代码的布局
我们知道,内核代码被加载到物理内存1MB处,然后in_pm32跳转到1MB物理内存处执行。
那么1MB物理内存处存放的是什么代码呢?
我们先看一个链接器的脚本文件arch/x86/boot/compressed/vmlinux.lds.S
1: #include <asm-generic/vmlinux.lds.h>
2:
3: OUTPUT_FORMAT(CONFIG_OUTPUT_FORMAT, CONFIG_OUTPUT_FORMAT, CONFIG_OUTPUT_FORMAT)
4:
5: #undef i386
6:
7: #include <asm/cache.h>
8: #include <asm/page_types.h>
9:
10: #ifdef CONFIG_X86_64
11: OUTPUT_ARCH(i386:x86-64)
12: ENTRY(startup_64)
13: #else
14: OUTPUT_ARCH(i386)
15: ENTRY(startup_32)
16: #endif
17:
18: SECTIONS
19: {
20: /* Be careful parts of head_64.S assume startup_32 is at
21: * address 0.
22: */
23: . = 0;
24: .head.text : {
25: _head = . ;
26: HEAD_TEXT
27: _ehead = . ;
28: }
29: .rodata..compressed : {
30: *(.rodata..compressed)
31: }
32: .text : {
33: _text = .; /* Text */
34: *(.text)
35: *(.text.*)
36: _etext = . ;
37: }
38: .rodata : {
39: _rodata = . ;
40: *(.rodata) /* read-only data */
41: *(.rodata.*)
42: _erodata = . ;
43: }
44: .got : {
45: _got = .;
46: KEEP(*(.got.plt))
47: KEEP(*(.got))
48: _egot = .;
49: }
50: .data : {
51: _data = . ;
52: *(.data)
53: *(.data.*)
54: _edata = . ;
55: }
56: . = ALIGN(L1_CACHE_BYTES);
57: .bss : {
58: _bss = . ;
59: *(.bss)
60: *(.bss.*)
61: *(COMMON)
62: . = ALIGN(8); /* For convenience during zeroing */
63: _ebss = .;
64: }
65: #ifdef CONFIG_X86_64
66: . = ALIGN(PAGE_SIZE);
67: .pgtable : {
68: _pgtable = . ;
69: *(.pgtable)
70: _epgtable = . ;
71: }
72: #endif
73: _end = .;
74: }
可见,在vmlinux即内核映像的0地址处存放的是.head.text段。
#define __HEAD .section ".head.text","ax"
因此,我们找到下面的代码:arch/x86/boot/compressed/head_32.S
1:
2: __HEAD
3: ENTRY(startup_32)
4: cld
5: /*
6: * Test KEEP_SEGMENTS flag to see if the bootloader is asking
7: * us to not reload segments
8: */
9: testb $(1<<6), BP_loadflags(%esi)
10: jnz 1f
11:
12: cli
13: movl $__BOOT_DS, %eax
14: movl %eax, %ds
15: movl %eax, %es
16: movl %eax, %fs
17: movl %eax, %gs
18: movl %eax, %ss
19: 1:
以及arch/x86/kernel/head_32.S
1: /*
2: * 32-bit kernel entrypoint; only used by the boot CPU. On entry,
3: * %esi points to the real-mode code as a 32-bit pointer.
4: * CS and DS must be 4 GB flat segments, but we don't depend on
5: * any particular GDT layout, because we load our own as soon as we
6: * can.
7: */
8: __HEAD
9: ENTRY(startup_32)
10: movl pa(stack_start),%ecx
11:
12: /* test KEEP_SEGMENTS flag to see if the bootloader is asking
13: us to not reload segments */
14: testb $(1<<6), BP_loadflags(%esi)
15: jnz 2f
16:
17: /*
18: * Set segments to known values.
19: */
20: lgdt pa(boot_gdt_descr)
21: movl $(__BOOT_DS),%eax
22: movl %eax,%ds
23: movl %eax,%es
24: movl %eax,%fs
25: movl %eax,%gs
26: movl %eax,%ss
27: 2:
28: leal -__PAGE_OFFSET(%ecx),%esp
那么这二者有什么先后顺序吗?
原来,思路到了这里是走进了一个误区,/compressed目录下面存放的是压缩后的代码,主要功能是解压缩内核;而/kernel目录下的才是真正的内核文件。
在/kernel目录下也有一个链接器的脚本文件arch/x86/kernel/vmlinux.lds.S
1: /*
2: * ld script for the x86 kernel
3: *
4: * Historic 32-bit version written by Martin Mares <mj@atrey.karlin.mff.cuni.cz>
5: *
6: * Modernisation, unification and other changes and fixes:
7: * Copyright (C) 2007-2009 Sam Ravnborg <sam@ravnborg.org>
8: *
9: *
10: * Don't define absolute symbols until and unless you know that symbol
11: * value is should remain constant even if kernel image is relocated
12: * at run time. Absolute symbols are not relocated. If symbol value should
13: * change if kernel is relocated, make the symbol section relative and
14: * put it inside the section definition.
15: */
16:
17: #ifdef CONFIG_X86_32
18: #define LOAD_OFFSET __PAGE_OFFSET
19: #else
20: #define LOAD_OFFSET __START_KERNEL_map
21: #endif
22:
23: #include <asm-generic/vmlinux.lds.h>
24: #include <asm/asm-offsets.h>
25: #include <asm/thread_info.h>
26: #include <asm/page_types.h>
27: #include <asm/cache.h>
28: #include <asm/boot.h>
29:
30: #undef i386 /* in case the preprocessor is a 32bit one */
31:
32: OUTPUT_FORMAT(CONFIG_OUTPUT_FORMAT, CONFIG_OUTPUT_FORMAT, CONFIG_OUTPUT_FORMAT)
33:
34: #ifdef CONFIG_X86_32
35: OUTPUT_ARCH(i386)
36: ENTRY(phys_startup_32)
37: jiffies = jiffies_64;
38: #else
39: OUTPUT_ARCH(i386:x86-64)
40: ENTRY(phys_startup_64)
41: jiffies_64 = jiffies;
42: #endif
43:
44: #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
45: /*
46: * On 64-bit, align RODATA to 2MB so that even with CONFIG_DEBUG_RODATA
47: * we retain large page mappings for boundaries spanning kernel text, rodata
48: * and data sections.
49: *
50: * However, kernel identity mappings will have different RWX permissions
51: * to the pages mapping to text and to the pages padding (which are freed) the
52: * text section. Hence kernel identity mappings will be broken to smaller
53: * pages. For 64-bit, kernel text and kernel identity mappings are different,
54: * so we can enable protection checks that come with CONFIG_DEBUG_RODATA,
55: * as well as retain 2MB large page mappings for kernel text.
56: */
57: #define X64_ALIGN_DEBUG_RODATA_BEGIN . = ALIGN(HPAGE_SIZE);
58:
59: #define X64_ALIGN_DEBUG_RODATA_END \
60: . = ALIGN(HPAGE_SIZE); \
61: __end_rodata_hpage_align = .;
62:
63: #else
64:
65: #define X64_ALIGN_DEBUG_RODATA_BEGIN
66: #define X64_ALIGN_DEBUG_RODATA_END
67:
68: #endif
69:
70: PHDRS {
71: text PT_LOAD FLAGS(5); /* R_E */
72: data PT_LOAD FLAGS(6); /* RW_ */
73: #ifdef CONFIG_X86_64
74: user PT_LOAD FLAGS(5); /* R_E */
75: #ifdef CONFIG_SMP
76: percpu PT_LOAD FLAGS(6); /* RW_ */
77: #endif
78: init PT_LOAD FLAGS(7); /* RWE */
79: #endif
80: note PT_NOTE FLAGS(0); /* ___ */
81: }
82:
83: SECTIONS
84: {
85: #ifdef CONFIG_X86_32
86: . = LOAD_OFFSET + LOAD_PHYSICAL_ADDR;
87: phys_startup_32 = startup_32 - LOAD_OFFSET;
88: #else
89: . = __START_KERNEL;
90: phys_startup_64 = startup_64 - LOAD_OFFSET;
91: #endif
92:
93: /* Text and read-only data */
94: .text : AT(ADDR(.text) - LOAD_OFFSET) {
95: _text = .;
96: /* bootstrapping code */
97: HEAD_TEXT
98: #ifdef CONFIG_X86_32
99: . = ALIGN(PAGE_SIZE);
100: *(.text..page_aligned)
101: #endif
102: . = ALIGN(8);
103: _stext = .;
104: TEXT_TEXT
105: SCHED_TEXT
106: LOCK_TEXT
107: KPROBES_TEXT
108: ENTRY_TEXT
109: IRQENTRY_TEXT
110: *(.fixup)
111: *(.gnu.warning)
112: /* End of text section */
113: _etext = .;
114: } :text = 0x9090
115:
116: NOTES :text :note
117:
118: EXCEPTION_TABLE(16) :text = 0x9090
119:
120: #if defined(CONFIG_DEBUG_RODATA)
121: /* .text should occupy whole number of pages */
122: . = ALIGN(PAGE_SIZE);
123: #endif
124: X64_ALIGN_DEBUG_RODATA_BEGIN
125: RO_DATA(PAGE_SIZE)
126: X64_ALIGN_DEBUG_RODATA_END
127:
128: /* Data */
129: .data : AT(ADDR(.data) - LOAD_OFFSET) {
130: /* Start of data section */
131: _sdata = .;
132:
133: /* init_task */
134: INIT_TASK_DATA(THREAD_SIZE)
135:
136: #ifdef CONFIG_X86_32
137: /* 32 bit has nosave before _edata */
138: NOSAVE_DATA
139: #endif
140:
141: PAGE_ALIGNED_DATA(PAGE_SIZE)
142:
143: CACHELINE_ALIGNED_DATA(L1_CACHE_BYTES)
144:
145: DATA_DATA
146: CONSTRUCTORS
147:
148: /* rarely changed data like cpu maps */
149: READ_MOSTLY_DATA(INTERNODE_CACHE_BYTES)
150:
151: /* End of data section */
152: _edata = .;
153: } :data
154:
155: #ifdef CONFIG_X86_64
156:
157: #define VSYSCALL_ADDR (-10*1024*1024)
158:
159: #define VLOAD_OFFSET (VSYSCALL_ADDR - __vsyscall_0 + LOAD_OFFSET)
160: #define VLOAD(x) (ADDR(x) - VLOAD_OFFSET)
161:
162: #define VVIRT_OFFSET (VSYSCALL_ADDR - __vsyscall_0)
163: #define VVIRT(x) (ADDR(x) - VVIRT_OFFSET)
164: #define EMIT_VVAR(x, offset) .vsyscall_var_ ## x \
165: ADDR(.vsyscall_0) + offset \
166: : AT(VLOAD(.vsyscall_var_ ## x)) { \
167: *(.vsyscall_var_ ## x) \
168: } \
169: x = VVIRT(.vsyscall_var_ ## x);
170:
171: . = ALIGN(4096);
172: __vsyscall_0 = .;
173:
174: . = VSYSCALL_ADDR;
175: .vsyscall_0 : AT(VLOAD(.vsyscall_0)) {
176: *(.vsyscall_0)
177: } :user
178:
179: . = ALIGN(L1_CACHE_BYTES);
180: .vsyscall_fn : AT(VLOAD(.vsyscall_fn)) {
181: *(.vsyscall_fn)
182: }
183:
184: .vsyscall_1 ADDR(.vsyscall_0) + 1024: AT(VLOAD(.vsyscall_1)) {
185: *(.vsyscall_1)
186: }
187: .vsyscall_2 ADDR(.vsyscall_0) + 2048: AT(VLOAD(.vsyscall_2)) {
188: *(.vsyscall_2)
189: }
190:
191: .vsyscall_3 ADDR(.vsyscall_0) + 3072: AT(VLOAD(.vsyscall_3)) {
192: *(.vsyscall_3)
193: }
194:
195: #define __VVAR_KERNEL_LDS
196: #include <asm/vvar.h>
197: #undef __VVAR_KERNEL_LDS
198:
199: . = __vsyscall_0 + PAGE_SIZE;
200:
201: #undef VSYSCALL_ADDR
202: #undef VLOAD_OFFSET
203: #undef VLOAD
204: #undef VVIRT_OFFSET
205: #undef VVIRT
206: #undef EMIT_VVAR
207:
208: #endif /* CONFIG_X86_64 */
209:
210: /* Init code and data - will be freed after init */
211: . = ALIGN(PAGE_SIZE);
212: .init.begin : AT(ADDR(.init.begin) - LOAD_OFFSET) {
213: __init_begin = .; /* paired with __init_end */
214: }
215:
216: #if defined(CONFIG_X86_64) && defined(CONFIG_SMP)
217: /*
218: * percpu offsets are zero-based on SMP. PERCPU_VADDR() changes the
219: * output PHDR, so the next output section - .init.text - should
220: * start another segment - init.
221: */
222: PERCPU_VADDR(INTERNODE_CACHE_BYTES, 0, :percpu)
223: #endif
224:
225: INIT_TEXT_SECTION(PAGE_SIZE)
226: #ifdef CONFIG_X86_64
227: :init
228: #endif
229:
230: INIT_DATA_SECTION(16)
231:
232: /*
233: * Code and data for a variety of lowlevel trampolines, to be
234: * copied into base memory (< 1 MiB) during initialization.
235: * Since it is copied early, the main copy can be discarded
236: * afterwards.
237: */
238: .x86_trampoline : AT(ADDR(.x86_trampoline) - LOAD_OFFSET) {
239: x86_trampoline_start = .;
240: *(.x86_trampoline)
241: x86_trampoline_end = .;
242: }
243:
244: .x86_cpu_dev.init : AT(ADDR(.x86_cpu_dev.init) - LOAD_OFFSET) {
245: __x86_cpu_dev_start = .;
246: *(.x86_cpu_dev.init)
247: __x86_cpu_dev_end = .;
248: }
249:
250: /*
251: * start address and size of operations which during runtime
252: * can be patched with virtualization friendly instructions or
253: * baremetal native ones. Think page table operations.
254: * Details in paravirt_types.h
255: */
256: . = ALIGN(8);
257: .parainstructions : AT(ADDR(.parainstructions) - LOAD_OFFSET) {
258: __parainstructions = .;
259: *(.parainstructions)
260: __parainstructions_end = .;
261: }
262:
263: /*
264: * struct alt_inst entries. From the header (alternative.h):
265: * "Alternative instructions for different CPU types or capabilities"
266: * Think locking instructions on spinlocks.
267: */
268: . = ALIGN(8);
269: .altinstructions : AT(ADDR(.altinstructions) - LOAD_OFFSET) {
270: __alt_instructions = .;
271: *(.altinstructions)
272: __alt_instructions_end = .;
273: }
274:
275: /*
276: * And here are the replacement instructions. The linker sticks
277: * them as binary blobs. The .altinstructions has enough data to
278: * get the address and the length of them to patch the kernel safely.
279: */
280: .altinstr_replacement : AT(ADDR(.altinstr_replacement) - LOAD_OFFSET) {
281: *(.altinstr_replacement)
282: }
283:
284: /*
285: * struct iommu_table_entry entries are injected in this section.
286: * It is an array of IOMMUs which during run time gets sorted depending
287: * on its dependency order. After rootfs_initcall is complete
288: * this section can be safely removed.
289: */
290: .iommu_table : AT(ADDR(.iommu_table) - LOAD_OFFSET) {
291: __iommu_table = .;
292: *(.iommu_table)
293: __iommu_table_end = .;
294: }
295:
296: . = ALIGN(8);
297: .apicdrivers : AT(ADDR(.apicdrivers) - LOAD_OFFSET) {
298: __apicdrivers = .;
299: *(.apicdrivers);
300: __apicdrivers_end = .;
301: }
302:
303: . = ALIGN(8);
304: /*
305: * .exit.text is discard at runtime, not link time, to deal with
306: * references from .altinstructions and .eh_frame
307: */
308: .exit.text : AT(ADDR(.exit.text) - LOAD_OFFSET) {
309: EXIT_TEXT
310: }
311:
312: .exit.data : AT(ADDR(.exit.data) - LOAD_OFFSET) {
313: EXIT_DATA
314: }
315:
316: #if !defined(CONFIG_X86_64) || !defined(CONFIG_SMP)
317: PERCPU_SECTION(INTERNODE_CACHE_BYTES)
318: #endif
319:
320: . = ALIGN(PAGE_SIZE);
321:
322: /* freed after init ends here */
323: .init.end : AT(ADDR(.init.end) - LOAD_OFFSET) {
324: __init_end = .;
325: }
326:
327: /*
328: * smp_locks might be freed after init
329: * start/end must be page aligned
330: */
331: . = ALIGN(PAGE_SIZE);
332: .smp_locks : AT(ADDR(.smp_locks) - LOAD_OFFSET) {
333: __smp_locks = .;
334: *(.smp_locks)
335: . = ALIGN(PAGE_SIZE);
336: __smp_locks_end = .;
337: }
338:
339: #ifdef CONFIG_X86_64
340: .data_nosave : AT(ADDR(.data_nosave) - LOAD_OFFSET) {
341: NOSAVE_DATA
342: }
343: #endif
344:
345: /* BSS */
346: . = ALIGN(PAGE_SIZE);
347: .bss : AT(ADDR(.bss) - LOAD_OFFSET) {
348: __bss_start = .;
349: *(.bss..page_aligned)
350: *(.bss)
351: . = ALIGN(PAGE_SIZE);
352: __bss_stop = .;
353: }
354:
355: . = ALIGN(PAGE_SIZE);
356: .brk : AT(ADDR(.brk) - LOAD_OFFSET) {
357: __brk_base = .;
358: . += 64 * 1024; /* 64k alignment slop space */
359: *(.brk_reservation) /* areas brk users have reserved */
360: __brk_limit = .;
361: }
362:
363: _end = .;
364:
365: STABS_DEBUG
366: DWARF_DEBUG
367:
368: /* Sections to be discarded */
369: DISCARDS
370: /DISCARD/ : { *(.eh_frame) }
371: }
372:
373:
374: #ifdef CONFIG_X86_32
375: /*
376: * The ASSERT() sink to . is intentional, for binutils 2.14 compatibility:
377: */
378: . = ASSERT((_end - LOAD_OFFSET <= KERNEL_IMAGE_SIZE),
379: "kernel image bigger than KERNEL_IMAGE_SIZE");
380: #else
381: /*
382: * Per-cpu symbols which need to be offset from __per_cpu_load
383: * for the boot processor.
384: */
385: #define INIT_PER_CPU(x) init_per_cpu__##x = x + __per_cpu_load
386: INIT_PER_CPU(gdt_page);
387: INIT_PER_CPU(irq_stack_union);
388:
389: /*
390: * Build-time check on the image size:
391: */
392: . = ASSERT((_end - _text <= KERNEL_IMAGE_SIZE),
393: "kernel image bigger than KERNEL_IMAGE_SIZE");
394:
395: #ifdef CONFIG_SMP
396: . = ASSERT((irq_stack_union == 0),
397: "irq_stack_union is not at start of per-cpu area");
398: #endif
399:
400: #endif /* CONFIG_X86_32 */
401:
402: #ifdef CONFIG_KEXEC
403: #include <asm/kexec.h>
404:
405: . = ASSERT(kexec_control_code_size <= KEXEC_CONTROL_CODE_MAX_SIZE,
406: "kexec control code size is too big");
407: #endif
408:
SECTIONS
{
#ifdef CONFIG_X86_32
. = LOAD_OFFSET + LOAD_PHYSICAL_ADDR;
phys_startup_32 = startup_32 - LOAD_OFFSET;
#else
. = __START_KERNEL;
phys_startup_64 = startup_64 - LOAD_OFFSET;
#endif/* Text and read-only data */
.text : AT(ADDR(.text) - LOAD_OFFSET) {
_text = .;
/* bootstrapping code */
HEAD_TEXT
#ifdef CONFIG_X86_32
. = ALIGN(PAGE_SIZE);
*(.text..page_aligned)
#endif
. = ALIGN(8);
_stext = .;
TEXT_TEXT
SCHED_TEXT
LOCK_TEXT
KPROBES_TEXT
ENTRY_TEXT
IRQENTRY_TEXT
*(.fixup)
*(.gnu.warning)
/* End of text section */
_etext = .;
} :text = 0x9090
其中
1:
2: #ifdef CONFIG_X86_32
3: #define LOAD_OFFSET __PAGE_OFFSET
4: #else
5: #define LOAD_OFFSET __START_KERNEL_map
6: #endif
1: /* Physical address where kernel should be loaded. */
2: #define LOAD_PHYSICAL_ADDR ((CONFIG_PHYSICAL_START \
3: + (CONFIG_PHYSICAL_ALIGN - 1)) \
4: & ~(CONFIG_PHYSICAL_ALIGN - 1))
config PHYSICAL_START
hex "Physical address where the kernel is loaded" if (EXPERT || CRASH_DUMP)
default "0x1000000"
---help---
This gives the physical address where the kernel is loaded.
If kernel is a not relocatable (CONFIG_RELOCATABLE=n) then
bzImage will decompress itself to above physical address and
run from there. Otherwise, bzImage will run from the address where
it has been loaded by the boot loader and will ignore above physical
address.
[arch/x86/Kconfig]
因此红色语句将.[当前标号]定位到3GB+1MB(0xC0100000)虚拟地址处
1MB物理内存处
#define HEAD_TEXT *(.head.text)
因此,可以确认,1MB物理内存处是arch/x86/kernel/head_32.S中的startup_32函数
2. startup_32函数
该函数也是通过汇编定义
#define PAGE_TABLE_SIZE(pages) ((pages) / PTRS_PER_PGD)
/* Number of possible pages in the lowmem region */
LOWMEM_PAGES = (((1<<32) - __PAGE_OFFSET) >> PAGE_SHIFT)
/* Enough space to fit pagetables for the low memory linear map */
MAPPING_BEYOND_END = PAGE_TABLE_SIZE(LOWMEM_PAGES) << PAGE_SHIFT/*
* Worst-case size of the kernel mapping we need to make:
* a relocatable kernel can live anywhere in lowmem, so we need to be able
* to map all of lowmem.
*/
KERNEL_PAGES = LOWMEM_PAGESINIT_MAP_SIZE = PAGE_TABLE_SIZE(KERNEL_PAGES) * PAGE_SIZE
LOWMEM_PAGES为1GB大小,即内核态的内存空间范围。
long(((long long)1 << 32 ) / 4) >> 12 = 0x00040000
即需要0x40000个页表项来表示内核可能用到的地址空间。
PAGE_TABLE_SIZE(0x40000) = 0x40000 / 1024 = 0x100
需要页目录能包含0x100(256)个项目,每个项目用于指定对应的页表的物理地址,每个页目录项为32位。因此需要
0x100 * 4 = 1024bytes = 1KB
来保存内核需要的页目录项目。
接下来,分配存放内核页表的内存空间:
RESERVE_BRK(pagetables, INIT_MAP_SIZE)
1: /*
2: * Reserve space in the brk section. The name must be unique within
3: * the file, and somewhat descriptive. The size is in bytes. Must be
4: * used at file scope.
5: *
6: * (This uses a temp function to wrap the asm so we can pass it the
7: * size parameter; otherwise we wouldn't be able to. We can't use a
8: * "section" attribute on a normal variable because it always ends up
9: * being @progbits, which ends up allocating space in the vmlinux
10: * executable.)
11: */
12: #define RESERVE_BRK(name,sz) \
13: static void __section(.discard.text) __used notrace \
14: __brk_reservation_fn_##name##__(void) { \
15: asm volatile ( \
16: ".pushsection .brk_reservation,\"aw\",@nobits;" \
17: ".brk." #name ":" \
18: " 1:.skip %c0;" \
19: " .size .brk." #name ", . - 1b;" \
20: " .popsection" \
21: : : "i" (sz)); \
22: }
相当于分配一个.brk.pagetables的section,大小为1KB。
下面这段代码,检查bootloader有没有明确地指示不要重新设置各个段选择子的内容,如果可以,就将各个数据段选择子都重置为BOOT_DS段选择子。
1: /* test KEEP_SEGMENTS flag to see if the bootloader is asking
2: us to not reload segments */
3: testb $(1<<6), BP_loadflags(%esi)
4: jnz 2f
5:
6: /*
7: et segments to known values.
8:
9: lgdt pa(boot_gdt_descr)
10: movl $(__BOOT_DS),%eax
11: movl %eax,%ds
12: movl %eax,%es
13: movl %eax,%fs
14: movl %eax,%gs
15: movl %eax,%ss
在上面.data section中有设置标号stack_start
1: .data
2: .balign 4
3: ENTRY(stack_start)
4: .long init_thread_union+THREAD_SIZE
5:
6: early_recursion_flag:
7: .long 0
8:
9: ready: .byte 0
10:
11: int_msg:
12: .asciz "Unknown interrupt or fault at: %p %p %p\n"
13:
14: fault_msg:
15: /* fault info: */
16: .ascii "BUG: Int %d: CR2 %p\n"
17: /* pusha regs: */
18: .ascii " EDI %p ESI %p EBP %p ESP %p\n"
19: .ascii " EBX %p EDX %p ECX %p EAX %p\n"
20: /* fault frame: */
21: .ascii " err %p EIP %p CS %p flg %p\n"
22: .ascii "Stack: %p %p %p %p %p %p %p %p\n"
23: .ascii " %p %p %p %p %p %p %p %p\n"
24: .asciz " %p %p %p %p %p %p %p %p\n"
25:
26: #include "../../x86/xen/xen-head.S"
Linux启动过程的内核代码分析的更多相关文章
- 深入理解Linux启动过程
深入理解Linux启动过程 本文详细分析了Linux桌面操作系统的启动过程,涉及到BIOS系统.LILO 和GRUB引导装载程序,以及bootsect.setup.vmlinux等映像文件 ...
- 从Linux启动过程到android启动过程
Linux启动过程: 1.首先开机给系统供电,此时硬件电路会产生一个确定的复位时序,保证cpu是最后一个被复位的器件.为什么cpu要最后被复位呢?因为 如果cpu第一个被复位,则当cpu复位后开始运行 ...
- Linux 启动过程详解
目录 1. Linux启动过程 2. 启动过程概述 3. 引导加载阶段 4. 内核阶段 4.1 内核加载阶段 4.2 内核启动阶段 5. 早期的用户空间 6. 初始化过程 6.1 SysV init ...
- 转-Linux启动过程详解(inittab、rc.sysinit、rcX.d、rc.local)
http://blog.chinaunix.net/space.php?uid=10167808&do=blog&id=26042 1)BIOS自检2)启动Grub/Lilo3)加 ...
- Linux启动过程详解(inittab、rc.sysinit、rcX.d、rc.local)
启动第一步--加载BIOS 当你打开计算机电源,计算机会首先加载BIOS信息,BIOS信息是如此的重要,以至于计算机必须在最开始就找到它.这是因为BIOS中包含了CPU的相关信息.设备启动顺序信息.硬 ...
- Linux启动过程详解
Linux启动过程详解 附上两张图,加深记忆 图1: 图2: 第一张图比较简洁明了,下面对第一张图的步骤进行详解: 加载BIOS 当你打开计算机电源,计算机会首先加载BIOS信息,BIOS信息是如此的 ...
- Linux启动过程简述
Linux启动过程: 图片来自:https://www.cnblogs.com/codecc/p/boot.html 简单来讲: 加载BIOS–>读取MBR–>Boot Loader–&g ...
- Linux启动过程笔记
Linux启动过程 1.启动流程(BIOS->MBR:Boot Code->引导GRUB->载入内核->运行init->runlevel) 2./boot/grub/下有 ...
- 嵌入式Linux启动过程中的问题积累
嵌入式Linux启动过程中的问题积累 Dongas 07-12-19 1.Bad Magic Number ## Booting image at 33000000 ... Bad Magic Num ...
随机推荐
- 未来-YLB-跳蚤市场:跳蚤市场(flea market)
ylbtech-未来-YLB-跳蚤市场:跳蚤市场(flea market) 跳蚤市场(flea market)是欧美等西方国家对旧货地摊市场的别称.由一个个地摊摊位组成,市场规模大小不等. 出售商品多 ...
- PHP处理地址匹配出省市区
function handleAddress($address ='广东省深圳市龙华新区大浪街道同胜科技大厦'){ preg_match('/(.*?(省|自治区|北京市|天津市))/', $addr ...
- Java封装JDBC数据库增、删、改、查操作成JAR文件,以供Web工程调用,适用于多种数据库
废话不多说,直接上源代码,最后有使用方法,当然,也可以作为普通公用类使用,只是封装成JAR更方便使用. package db.util; import java.io.BufferedReader; ...
- 【C++第一个Demo】---控制台RPG游戏4【角色系统】
[角色基类] #ifndef _ROLE_H_ #define _ROLE_H_ #include<list> #include<vector> #include " ...
- jmeter beanshell postprocessor 使用
String newtoken=bsh.args[0];print(newtoken);${__setProperty(newtoken,${token},)}; String newcompanyI ...
- JPA派生标识符2
@Entity@Table(name = "adam_importfile")@IdClass(BusinessAdviserFileId.class)public class B ...
- SpringCloud-技术专区-Zuul-使用指南
Zuul作为微服务系统的网关组件,用于构建边界服务,致力于动态路由.过滤.监控.弹性伸缩和安全. Zuul功能 认证 压力测试 金丝雀测试 动态路由 负载削减 安全 静态响应处理 主动/主动交换管理 ...
- spring security 学习三-rememberMe
功能:登录时的“记住我”功能 原理: rememberMeAuthenticationFilter在security过滤器链中的位置,在请求走认证流程是,当前边的filter都不通过时,会走remem ...
- MySQL数据库企业级应用实践(多实例源码编译)
MySQL数据库企业级应用实践(多实例源码编译) 链接:https://pan.baidu.com/s/1ANGg3Kd_28BzQrA5ya17fQ 提取码:ekpy 复制这段内容后打开百度网盘手机 ...
- python中关于is,=和==的区别
在Python中 '='相当于赋值 '=='相当于等号两边的值相同 is则是表示两边的id,也就是内存地址相同