LightOJ 1203 Guarding Bananas (凸包最小顶角)
题目链接:LightOJ 1203
Problem Description
Once there was a lazy monkey in a forest. But he loved banana too much. One day there was a storm in the jungle and all the bananas fell from the trees. The monkey didn't want to lose any of the bananas. So, he wanted to find a banana such that he can eat that and he can also look after the other bananas. As he was lazy, he didn't want to move his eyes too wide. So, you have to help him finding the banana from where he can look after all the bananas but the degree of rotating his eyes is as small as possible. You can assume that the position of the bananas can be modeled as 2D points.
Here a banana is shown, from where the monkey can look after all the bananas with minimum eye rotation.
Input
Input starts with an integer \(T (\le 13)\), denoting the number of test cases.
Each case starts with a line containing an integer \(n (1 \le n \le 105)\) denoting the number of bananas. Each of the next \(n\) lines contains two integers \(x y (-10^9 \le x, y \le 10^9)\) denoting the co-ordinate of a banana. There can me more than one bananas in the same co-ordinate.
Output
For each case, print the case number and the minimum angle in degrees. Errors less than \(10^-6\) will be ignored.
Sample Input
2
1
4 4
4
0 0
10 0
10 10
2 1
Sample Output
Case 1: 0
Case 2: 45.0000000
Note
Dataset is huge. Use faster I/O methods.
Solution
题意:
给定若干个点的坐标,求凸包最小顶角。
思路
凸包
先求凸包,然后枚举所有顶角求最小值。
顶角求法:用两个向量的夹角求
\(\angle BAC\) 为向量 \(\overrightarrow {AB}\) 与 \(\overrightarrow {AC}\) 的夹角:
\]
Code
#include <bits/stdc++.h>
using namespace std;
const double eps = 1e-8;
const double pi = acos(-1.0);
const int maxn = 1e5 + 10;
int n;
struct Point {
double x, y;
Point() {}
Point(double a, double b) : x(a), y(b) {}
bool operator<(const Point &b) const {
if (x < b.x) return 1;
if (x > b.x) return 0;
return y < b.y;
}
Point operator-(const Point &b) {
return Point(x - b.x, y - b.y);
}
} p[maxn], stk[maxn];
typedef Point Vec;
int sgn(double x) {
if (fabs(x) <= eps)
return 0;
return x > 0 ? 1 : -1;
}
double dist(Point a, Point b) {
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
double cross(Vec a, Vec b) {
return a.x * b.y - a.y * b.x;
}
int Andrew() {
sort(p + 1, p + 1 + n);
int len = 0;
for (int i = 1; i <= n; ++i) {
while (len > 1 && sgn(cross(stk[len] - stk[len - 1], p[i] - stk[len - 1])) == -1) {
len--;
}
stk[++len] = p[i];
}
int k = len;
for (int i = n - 1; i >= 1; --i) {
while (len > k && sgn(cross(stk[len] - stk[len - 1], p[i] - stk[len - 1])) == -1) {
len--;
}
stk[++len] = p[i];
}
return len;
}
double angle(Point p, Point q, Point s) {
double x1 = q.x - p.x, y1 = q.y - p.y;
double x2 = s.x - p.x, y2 = s.y - p.y;
double ans = (x1 * x2 + y1 * y2) / (sqrt(x1 * x1 + y1 * y1) * sqrt(x2 * x2 + y2 * y2));
return acos(ans);
}
int main() {
int T;
scanf("%d", &T);
int kase = 0;
while(T--) {
map<pair<double, double>, int> mp;
n = 0;
int cnt;
scanf("%d", &cnt);
for (int i = 1; i <= cnt; ++i) {
double x, y;
scanf("%lf%lf", &x, &y);
if(mp[make_pair(x, y)] == 0) {
mp[make_pair(x, y)] = 1;
p[++n].x = x;
p[n].y = y;
}
}
if(n < 3) {
printf("Case %d: 0\n", ++kase);
continue;
}
int t = Andrew();
double min_angle = angle(stk[1], stk[t - 1], stk[2]);
for (int i = 2; i < t; i++) {
min_angle = min(min_angle, angle(stk[i], stk[i - 1], stk[i + 1]));
}
printf("Case %d: %.6lf\n", ++kase, min_angle * 180.0 / pi);
}
return 0;
}
LightOJ 1203 Guarding Bananas (凸包最小顶角)的更多相关文章
- Guarding Bananas
Guarding Bananas Once there was a lazy monkey in a forest. But he loved banana too much. One day the ...
- LightOj1203 - Guarding Bananas(凸包求多边形中的最小角)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1203 题意:给你一个点集,求凸包中最小的角:模板题,但是刚开始的时候模板带错了,错的我 ...
- LightOJ 1239 - Convex Fence 凸包周长
LINK 题意:类似POJ的宫殿围墙那道,只不过这道题数据稍微强了一点,有共线的情况 思路:求凸包周长加一个圆周长 /** @Date : 2017-07-20 15:46:44 * @FileNam ...
- LightOJ 1203--Guarding Bananas(二维凸包+内角计算)
1203 - Guarding Bananas PDF (English) Statistics Forum Time Limit: 3 second(s) Memory Limit: 32 M ...
- kuangbin 带你飞 数学基础
模版整理: 晒素数 void init() { cas = ; ; i < MAXD ; i++) is_prime[i] = true; is_prime[] = is_prime[] = f ...
- (hdu step 7.1.5)Maple trees(凸包的最小半径寻找掩护轮)
称号: Maple trees Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...
- 【旋转卡壳+凸包】BZOJ1185:[HNOI2007]最小矩形覆盖
1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 1945 Solve ...
- 【BZOJ1185】[HNOI2007]最小矩形覆盖(凸包,旋转卡壳)
[BZOJ1185][HNOI2007]最小矩形覆盖(凸包,旋转卡壳) 题面 BZOJ 洛谷 题解 最小的矩形一定存在一条边在凸包上,那么枚举这条边,我们还差三个点,即距离当前边的最远点,以及做这条边 ...
- [BZOJ1185][HNOI2007]最小矩形覆盖-[凸包+旋转卡壳]
Description 传送门 Solution 感性理解一下,最小矩形一定是由一条边和凸包上的边重合的. 然后它就是模板题了..然而真的好难调,小于大于动不动就打错. Code #include&l ...
随机推荐
- 53、tensorflow基本操作
import tensorflow as tf import numpy as np x_data = np.float32(np.random.rand(2,100)) print(x_data) ...
- 算法刷题笔记-stack-四则运算
题目描述: 给定一个含有数字和运算符的字符串,为表达式添加括号,改变其运算优先级以求出不同的结果.你需要给出所有可能的组合的结果.有效的运算符号包含 +, - 以及 * . 示例 1: 输入: &qu ...
- swat - 基于web的samba管理工具
总览 swat [ -s smb config file ] [ -a ] 描述 此程序是 samba 套件的一部分. swat 允许 samba 管理员通过web浏览器配置复杂的 smb.conf ...
- OpenGL学习——绘制第一个三角形
终于把三角形绘制出来了,首先一些关键概念.操作. Vertex Data 顶点数据 VBO Vertex Buffer Objects 顶点缓冲对象 VA ...
- Windows 下安装 nvm 管理 nodejs 版本
摘自https://segmentfault.com/a/1190000007612011 1. 下载安装与使用 Github: Download nvm-windows --- nvm-setup. ...
- case ...esac判断 function方法 循环loop,while do done,until do done
就类似于其他语言中的case语句 用法 要点 第一 开始结束 case esac 正好相反 第二 每段程序段需要用 两个:号结束. 例: } in "hello") ech ...
- 【Luogu】【关卡2-16】线性动态规划(2017年10月)【还差三道题】
任务说明:这也是基础的动态规划.是在线性结构上面的动态规划,一定要掌握. P1020 导弹拦截 导弹拦截 P1091 合唱队形 老师给同学们排合唱队形.N位同学站成一排,音乐老师要请其中的(N-K)位 ...
- PHP-在排序数组中查找元素的第一个和最后一个位置
给定一个按照升序排列的整数数组 nums,和一个目标值 target.找出给定目标值在数组中的开始位置和结束位置. 你的算法时间复杂度必须是 O(log n) 级别. 如果数组中不存在目标值,返回 [ ...
- macOS截屏
Command+Shift+3: 全屏幕截屏,并自动保存在桌面 Command+Shift+4: 手动截屏,并自动保存在桌面 Command+Shift+4, + Space, 之后点击程序的窗口,实 ...
- Java虚拟机(一)
一.Java发展历程 Java之父,James Gosling博士 时间 事件 1991年4月 James Gosling博士领导的Green Project启动,java语言前身Oak启动 1995 ...
