全场都 AK 了就我爆 0 了


题意

  \(t\) 组询问,每组询问给定 \(n\),求 \(\sum\limits_{k=1}^n [n,k]\)。其中 \([a,b]\) 表示 \(a\) 和 \(b\) 的最小公倍数。

  \(t\le 3\times 10^5,\space n\le 10^6\)

题解

  怎么全世界都做过这题啊

  前一天晚上听林老师说今天 T1 是莫比乌斯反演,然后我就出了一身冷汗……我没做过几道莫反,推不出来式子会不会被 D 啊……

  然后到了今天……

  我自己用模板的方法(?)推了个奇怪的长式子,写完后以为解不了,于是扔一边了……

  后来才发现我 sb 了,其实可以解……

  我推的式子大概是这样 $$ans = \sum\limits_{T=1}^n \sum\limits_{g|T} \frac{n (\frac{T}{g}+\lfloor \frac{n}{T}\rfloor \frac{T}{g}) \lfloor \frac{n}{T}\rfloor} {2} \sigma(n) \mu(\frac{T}{g}) \lfloor\frac{n}{T} \rfloor$$

  (\(\sigma(n)\) 表示 \(n\) 的约数个数)

  显然把 \(\frac{T}{g}\) 提出来,只与 \(\frac{T}{g}\) 有关的项都可以 \(O(n\log n)\) 预处理一下前缀和,查询的时候对 \(\lfloor \frac{n}{T}\rfloor\) 整除分块即可。

  我才刚学莫比乌斯反演 \(1e-18\) 秒,就不能对我友好一点么

  这个式子的正确性我就懒得验证了,因为标程做法根本就不是莫反,是个简单数论……各位巨佬如果发现我这个式子有问题的话,还烦请指正 \(\text{ヽ(*^ー^)人(^ー^*)ノ}\)

  千万不能相信林老师预告的题目解法(flag)

  标程的做法大致是这样:



  很显然你没有看到任何莫反的痕迹,一个 \(\mu\) 函数都没有。

  除了最后一行外,前面都很好理解。这里解释一下是怎么从倒数第二行 推出最后一行的(我大概就卡在这了):

  我们提出这部分:\(\sum\limits_{k=1}^{\frac{n}{p}} [(k,\frac{n}{p})=1]\)

  不难发现,它等于 \(\varphi(\frac{n}{p})\)。

  然后我们考虑对于满足 \([(k,\frac{n}{p})=1]\) 的项 \(k\),把加 \(1\) 改成加 \(k\),即在 \([(k,\frac{n}{p})=1]\) 前面乘上 \(k\)。

  这个好像不是很好求,但我们有这样一个经验:设 \(a\ge b\),则 \(\gcd(a,b)=\gcd(a,a-b)\)。运用到这里就是 \(\gcd(k,\frac{n}{p}) = \gcd(\frac{n}{p}-k,\frac{n}{p})\)。

  也就是说,若 \([(k,\frac{n}{p})=1]\),则有 \([(\frac{n}{p}-k,\frac{n}{p})=1]\)。即要累加的 \(k\) 是以 \(\frac{n}{p}\) 为和成对出现的!

  这个性质就很好,我们可以把加 \(k\) 改成加 \(\frac{\frac{n}{p}}{2}\) 了。显然后者是个定值。

  所以我们简化倒数第二行式子得 $$ans = n\sum\limits_{p|n}^{n} \frac{\frac{n}{p}\times \varphi(\frac{n}{p}) + [\frac{n}{p}=1]} {2}$$ $$ans = n\sum\limits_{p|n}^{n} \frac{p\times \varphi(p) + [p=1]}{2}$$

  \([p=1]\) 是因为当 \(p=1\) 时只有 \(1\) 个 \(k\),它并不能配对,也就不能当一对的平均数加。但由于加的 \(k\) 是 \(1\),直接在分子补上 \(1\) 就行了。

  这就是标程做法的最后一行式子了。

  什么?你问后面那段式子能不能被 \(2\) 整除?你把除以 \(2\) 扩大到等号右边全局不就行了?\(ans\) 肯定是个整数吧。

  直到看了别人代码后我才发现后面那段式子一定被 \(2\) 整除……问了一下 scb 聚聚,他 1s 就证出来了,好强啊 ↓↓↓

    把 \(\varphi\) 函数打个表就会发现,除了 \(\varphi(1)\) 和 \(\varphi(2)\) 是 \(1\) 以外,\(\varphi\) 值都是偶数。

    考虑对 \(\varphi(x)(x\gt 2)\) 的 \(x\) 的奇偶性:

      若 \(x\) 是奇数,它至少有一个奇数因子 \(y\),所以计算 \(\varphi(x)\) 时会乘一次 \(\frac{y-1}{y}\),而 \(y-1\) 是偶数,所以 \(\varphi(x)\) 是偶数。

      若 \(x\) 是偶数,它会被分解成 \(2^z\times y\),显然 \(y\) 是奇数。当 \(y=1\) 时,\(\varphi(x)=\frac{x}{2}=2^{z-1}\),是个偶数;当 \(y\) 为其它奇数时,因为 \(\varphi\) 是积性函数,所以 \(\varphi(x) = \varphi(2^z) \varphi(y)\),而 \(\varphi(y)\) 是偶数,所以 \(\varphi(x)\) 是偶数。

    所以当上述式子 \(p\gt 2\) 时,\(\varphi(p)\) 是偶数且 \([p=1]=0\),故分子是偶数,可以被 \(2\) 整除。

    当上述式子 \(p=2\) 时,\(p\) 是偶数且 \([p=1]=0\),故分子是偶数。

    当上述式子 \(p=1\) 时,\(p\times \varphi(p)=1\) 且 \([p=1]=1\),故分子是 \(2\),可以被 \(2\) 整除(其实也很显然除完后就是 \(k=1\))。

  预处理 \(\varphi\) 即可。复杂度 \(O(q\log n)\)。

#include<bits/stdc++.h>
#define ll long long
#define N 1000000
using namespace std;
inline int read(){
int x=0; bool f=1; char c=getchar();
for(;!isdigit(c); c=getchar()) if(c=='-') f=0;
for(; isdigit(c); c=getchar()) x=(x<<3)+(x<<1)+(c^'0');
if(f) return x; return 0-x;
}
int t,mx=0,cnt,a[N+5];
ll phi[N+5],pri[N+5],ans[N+5];
bool vis[N+5];
void init(){
phi[1]=1;
for(int i=2;i<=N;i++){
if(!vis[i]) pri[++cnt]=i, phi[i]=i-1;
for(int j=1; j<=cnt && i*pri[j]<=N; j++){
vis[pri[j]*i]=1;
if(i%pri[j]==0){
phi[i*pri[j]] = phi[i] * pri[j];
break;
}
phi[i*pri[j]] = phi[i] * (pri[j]-1);
}
}
}
int main(){
init();
t=read();
for(int i=1; i<=t; i++) mx = max(mx, a[i]=read());
for(int i=1; i<=mx; i++)
for(int j=1; i*j<=mx; j++)
ans[i*j] += (1ll * phi[i] * i + (i==1)) >> 1;
for(int i=1; i<=t; i++) printf("%lld\n", 1ll * ans[a[i]] * a[i]);
return 0;
}

  做完这道题后我确信了一件事:我才刚学数论 \(1e-18\) 秒

【spoj 5971】lcmsum的更多相关文章

  1. BZOJ 2226 【SPOJ 5971】 LCMSum

    题目链接:LCMSum 这个题显然就是要我们推式子了……那么就来推一波: \begin{aligned}&\sum_{i=1}^n lcm(i,n) \\=&\sum_{i=1}^n\ ...

  2. 【 SPOJ - GRASSPLA】 Grass Planting (树链剖分+树状数组)

    54  种草约翰有 N 个牧场,编号为 1 到 N.它们之间有 N − 1 条道路,每条道路连接两个牧场.通过这些道路,所有牧场都是连通的.刚开始的时候,所有道路都是光秃秃的,没有青草.约翰会在一些道 ...

  3. 【SPOJ 2319】 BIGSEQ - Sequence (数位DP+高精度)

    BIGSEQ - Sequence You are given the sequence of all K-digit binary numbers: 0, 1,..., 2K-1. You need ...

  4. 【SPOJ 694】Distinct Substrings (更直接的求法)

    [链接]h在这里写链接 [题意] 接上一篇文章 [题解] 一个字符串所有不同的子串的个数=∑(len-sa[i]-height[i]) [错的次数] 0 [反思] 在这了写反思 [代码] #inclu ...

  5. 【SPOJ 694】Distinct Substrings

    [链接]h在这里写链接 [题意]     给你一个长度最多为1000的字符串     让你求出一个数x,这个x=这个字符串的不同子串个数; [题解]     后缀数组题.     把原串复制一份,加在 ...

  6. 【SPOJ DQUERY】区间数字统计

    [链接] 我是链接,点我呀:) [题意] 题意 [题解] 因为区间的端点移动一个单位的话,只会涉及到一个元素的增多或减少. 因此可以用莫队算法来解决. 只需要开一个数组(大小1百万),用下标来快速检索 ...

  7. 【SPOJ 220】 PHRASES - Relevant Phrases of Annihilation

    [链接]h在这里写链接 [题意]     给你n(n<=10)个字符串.     每个字符串长度最大为1e4;     问你能不能找到一个子串.     使得这个子串,在每个字符串里面都不想交出 ...

  8. 【SPOJ 7258】Lexicographical Substring Search

    http://www.spoj.com/problems/SUBLEX/ 好难啊. 建出后缀自动机,然后在后缀自动机的每个状态上记录通过这个状态能走到的不同子串的数量.该状态能走到的所有状态的f值的和 ...

  9. 【SPOJ 1812】Longest Common Substring II

    http://www.spoj.com/problems/LCS2/ 这道题想了好久. 做法是对第一个串建后缀自动机,然后用后面的串去匹配它,并在走过的状态上记录走到这个状态时的最长距离.每匹配完一个 ...

随机推荐

  1. spring boot 整合redis

    spring boot 中配置redis1 在pom.xml中增加相关包依赖:<dependency> <groupId>org.springframework.boot< ...

  2. Powershell重命名文件夹

    $TargetFolder = "F:\Code\优化后\" $folders = get-childitem $TargetFolder -forceForeach ($Fold ...

  3. 数据存储--SQLite

    SQLite是一个开源嵌入式关系数据库,实现自包容,零配置,单个文件就是数据库,方便存储和转移,在window不用安装,直接解压到文件夹,并设置path. Ubuntu下安装:sudo apt ins ...

  4. Python浅拷贝与深拷贝(可变对象与不可变对象)

    第一次遇到深拷贝和浅拷贝的问题是用python在一个for循环中对一个list赋值,使用的语句是 a = b 这个b会不断带入循环,每次计算得到,最后发现list乱七八糟的,后来才发现,python中 ...

  5. app测试自动化操作方法之一

    1.在输入框里输入字符 dr.find_element_by_android_uiautomator\ ( 'new UiSelector().text("邮箱或手机号")').s ...

  6. python二级考试知识点——turtle、random、time、PyInstaller、jieba、wordcloud

    turtle库(必考) 1.from turtle import * #导入turtle库中的所有方法 2.turtle.pensize(size) #画笔的大小 3.turtle.pencolor( ...

  7. 如何将其它javaweb项目变成可以成功在自己eclipse环境中运行的javaweb项目?

    说明:此文档仅适用于以下两种情况     (1)myeclipse项目需要在eclipse环境中运行     (2)eclipse项目,但是无法在自己的电脑eclipse环境中运行     注意:以下 ...

  8. Construct String from Binary Tree

    You need to construct a string consists of parenthesis and integers from a binary tree with the preo ...

  9. Oracle-DDL 1- 表管理

    DDL-数据定义语句: 一.表管理 1.create 创建表-- 必须有创建表的权限和表空间-- 表名必须以字母开头,可以包含数字和符号,不能是系统关键字 /*create table 表名(列名1 ...

  10. 大数据之Hadoop完全分布式集群搭建

    1.准备阶段 1.1.新建三台虚拟机 Hadoop完全分市式集群是典型的主从架构(master-slave),一般需要使用多台服务器来组建.我们准备3台服务器(关闭防火墙.静态IP.主机名称).如果没 ...