题意:给你一颗树,树的边权都是偶数,并且边权各不相同。你可以选择树的两个叶子结点,并且把两个叶子结点之间的路径加上一个值(可以为负数),问是否可以通过这种操作构造出这颗树?如果可以,输出构造方案。初始树的边权都是0。

思路:A1很简单,只要判断是否有度数为2的点就可以了。对于A2, 由于边权各不相同,所以A1的结论同样适用。现在我们来构造一组答案。官方题解的构造方式是这样的:我们假设要让一个节点u到叶子结点v的路径都加上一个值x,并且知道叶子结点l1, l2都可以到达u,我们执行以下操作:v到l1的路径加上x / 2, v到l2的路径加上x / 2, l1 到 l2的路径加上-x / 2,这样除了u到v的路径,其它路径的值没有变(太菜了,想不到。。。)。那么,我们从树根开始,从上到下逐个构造边权即可。

由于n只有1000,所以实现方式有两种。

第一种很暴力,赋值操作直接暴力加,复杂度O(n ^ 2)。

代码:

#include <bits/stdc++.h>
#define pii pair<int, int>
#define LL long long
using namespace std;
const int maxn = 1010;
vector<pii> G[maxn];
vector<int> son[maxn];
LL add[maxn];
struct node {
int x, y;
LL z;
};
vector<node> ans;
int root = 1;
int f[maxn];
void adde(int x, int y, int z) {
G[x].push_back(make_pair(y, z));
G[y].push_back(make_pair(x, z));
}
 
int dfs(int x, int fa) {
f[x] = fa;
for (auto y : G[x]) {
if(y.first== fa) continue;
int tmp = dfs(y.first, x);
son[x].push_back(tmp);
}
if(G[x].size() == 1) {
return x;
}
return son[x][0];
}
 
void update(int x, int p, int val) {
while(x != p) {
add[x] += val;
x = f[x];
}
}
void dfs1(int x, int fa) {
int cnt = 0;
if(x == root) {
int y = G[x][0].first;
if(G[y].size() == 1) {
ans.push_back((node){x, y, G[x][0].second});
return;
}
LL tmp = G[x][0].second;
ans.push_back((node){son[y][0], root, tmp / 2});
ans.push_back((node){son[y][1], root, tmp / 2});
ans.push_back(node{son[y][0], son[y][1], -tmp / 2});
dfs1(y, x);
} else {
for (auto y : G[x]) {
if(y.first == fa) continue;
LL tmp = y.second - add[y.first];
int tmp1;
if(cnt == 0) tmp1 = 1;
else tmp1 = 0;
ans.push_back((node){son[x][cnt], root, tmp / 2});
ans.push_back((node){son[x][cnt], son[x][tmp1], tmp / 2});
ans.push_back(node{root, son[x][tmp1], -tmp / 2});
update(son[x][cnt], x, tmp);
dfs1(y.first, x);
cnt++;
}
}
}
 
int main() {
int n;
int x, y, z;
scanf("%d", &n);
for (int i = 1; i < n; i++) {
scanf("%d%d%d", &x, &y, &z);
adde(x, y, z);
}
for (int i = 1; i <= n; i++) {
if(G[i].size() == 2) {
printf("NO\n");
return 0;
}
}
for (int i = 1; i <= n; i++) {
if(G[i].size() == 1) {
root = i;
break;
}
}
dfs(root, -1);
dfs1(root, -1);
printf("YES\n");
printf("%d\n", ans.size());
for (int i = 0; i < ans.size(); i++) {
printf("%d %d %lld\n", ans[i].x, ans[i].y, ans[i].z);
}
}

第二种用了类似树剖中重儿子的思想,我们给一颗子树中决定一个优先级最高的叶子结点,这样加的操作是这个叶子结点到它的祖先的路径上进行的,其它的路径没有影响,这样累加影响的时候,如果这个叶子结点,把前面的影响累加上,否则不加。复杂度O(n)。

代码:

#include <bits/stdc++.h>
#define pii pair<int, int>
#define LL long long
using namespace std;
const int maxn = 1010;
vector<pii> G[maxn];
vector<int> son[maxn];
LL add[maxn];
struct node {
int x, y;
LL z;
};
vector<node> ans;
int root = 1;
int v[maxn];
void adde(int x, int y, int z) {
G[x].push_back(make_pair(y, z));
G[y].push_back(make_pair(x, z));
} int dfs(int x, int fa) {
for (auto y : G[x]) {
if(y.first== fa) continue;
int tmp = dfs(y.first, x);
son[x].push_back(tmp);
}
if(G[x].size() == 1) {
v[x] = x;
return x;
}
v[x] = son[x][0];
return son[x][0];
} void dfs1(int x, int fa, int tot) {
int cnt = 0;
if(x == root) {
int y = G[x][0].first;
if(G[y].size() == 1) {
ans.push_back((node){x, y, G[x][0].second});
return;
}
LL tmp = G[x][0].second;
ans.push_back((node){son[y][0], root, tmp / 2});
ans.push_back((node){son[y][1], root, tmp / 2});
ans.push_back(node{son[y][0], son[y][1], -tmp / 2});
dfs1(y, x, 0);
} else {
for (auto y : G[x]) {
if(y.first == fa) continue;
LL tmp = y.second;
if(v[y.first] == v[x]) tmp -= tot;
int tmp1;
if(cnt == 0) tmp1 = 1;
else tmp1 = 0;
ans.push_back((node){son[x][cnt], root, tmp / 2});
ans.push_back((node){son[x][cnt], son[x][tmp1], tmp / 2});
ans.push_back(node{root, son[x][tmp1], -tmp / 2});
dfs1(y.first, x, y.second);
cnt++;
}
}
} int main() {
int n;
int x, y, z;
scanf("%d", &n);
for (int i = 1; i < n; i++) {
scanf("%d%d%d", &x, &y, &z);
adde(x, y, z);
}
for (int i = 1; i <= n; i++) {
if(G[i].size() == 2) {
printf("NO\n");
return 0;
}
}
for (int i = 1; i <= n; i++) {
if(G[i].size() == 1) {
root = i;
break;
}
}
dfs(root, -1);
dfs1(root, -1, 0);
printf("YES\n");
printf("%d\n", ans.size());
for (int i = 0; i < ans.size(); i++) {
printf("%d %d %lld\n", ans[i].x, ans[i].y, ans[i].z);
}
}

两份代码中为了实现方便,都找了一个度为1的点为根。

Codeforces 1188A 构造的更多相关文章

  1. B - Save the problem! CodeForces - 867B 构造题

    B - Save the problem! CodeForces - 867B 这个题目还是很简单的,很明显是一个构造题,但是早训的时候脑子有点糊涂,想到了用1 2 来构造, 但是去算这个数的时候算错 ...

  2. Johnny Solving CodeForces - 1103C (构造,图论)

    大意: 无向图, 无重边自环, 每个点度数>=3, 要求完成下面任意一个任务 找一条结点数不少于n/k的简单路径 找k个简单环, 每个环结点数小于n/k, 且不为3的倍数, 且每个环有一个特殊点 ...

  3. Codeforces 746G(构造)

                                                                                                      G. ...

  4. C - Long Beautiful Integer codeforces 1269C 构造

    题解: 这里的m一定是等于n的,n为数最大为n个9,这n个9一定满足条件,根据题目意思,前k个一定是和原序列前k个相等,因此如果说我们构造出来的大于等于原序列,直接输出就可以了,否则,由于后m-k个一 ...

  5. Dividing the numbers CodeForces - 899C (构造)

    大意: 求将[1,n]划分成两个集合, 且两集合的和的差尽量小. 和/2为偶数最小差一定为0, 和/2为奇数一定为1. 显然可以通过某个前缀和删去一个数得到. #include <iostrea ...

  6. Codeforces 772C 构造 数学 + dp + exgcd

    首先我们能注意到两个数x, y (0 < x , y < m) 乘以倍数互相可达当且仅当gcd(x, m) == gcd(y, m) 然后我们可以发现我们让gcd(x, m)从1开始出发走 ...

  7. Jzzhu and Apples CodeForces - 449C (构造,数学)

    大意: 求从[1,n]范围选择尽量多的数对, 使得每对数的gcd>1 考虑所有除2以外且不超过n/2的素数p, 若p倍数可以选择的有偶数个, 直接全部划分即可 有奇数个的话, 余下一个2*p不划 ...

  8. Gluttony CodeForces - 892D (构造,思维)

    题面: You are given an array a with n distinct integers. Construct an array b by permuting a such that ...

  9. Necklace CodeForces - 613C (构造)

    链接 大意: 给定n种珠子, 第i种有$a_i$个, 求将珠子穿成项链, 使得能使切开后的项链回文的切口尽量多 若有一种以上珠子为奇数, 显然不能为回文, 否则最大值一定是$gcd(a_1,a_2,. ...

随机推荐

  1. Altium Designer 19使用

    铺铜之后运行DRC检查弹出警告: Design contains shelved or modified (but not repoured)polygons. The result of DRC w ...

  2. vscode workspace 地址重置

    换了新电脑,做了vscode的迁移,workspace的物理地址换了,一直找不到修 正的地方 可以直接用文本编辑器打开 SourceDevelop.code-workspace类似这个workspac ...

  3. 英语单词delimiter

    delimiter 来源——命令参数 [root@centos7 ~]# cat /good/passwd root:x:::root:/root:/bin/bash bin:x:::bin:/bin ...

  4. Hadoop编程调用HDFS(PYTHON)

    1.运行环境 开发工具:PyCharm Python 版本:3.5 Hadoop环境: Cloudera QuickStart 2.GITHUB地址 https://github.com/nbfujx ...

  5. excle里边的数据怎么导入oracle数据库

    方式一:(不正式) select出的列数与已经准备好的excle中的列数相同.select  xh,name from 表名 where xh = 'ghf' for update;  (查不到任何结 ...

  6. SSM + MySQL批量删除操作

    最近项目中有个购物车功能需要能够选中商品,然后批量删除的操作,也可以单个删除,其实代码很简单就能实现. 这里需要注意的就是你前端是怎么传值的,我这里采用的数组的形式,用 ‘,’隔开. 然后控制层代码如 ...

  7. css如何让<a>标签,根据输入的内容长度调整宽度,宽度自适应,那位大仙帮帮忙

    css如何让<a>标签,根据输入的内容长度调整宽度,宽度自适应,那位大仙帮帮忙 5 样式 .ceshi{float:left; margin-left:13px; width:180px; ...

  8. mongodbdriver 的C# 驱动findasync变成列表的方法

    IAsyncCursorExtensions.ToList(返回的Task<IAsyncCursor<T>>实例). 也有他的异步版本.可以参见 https://mongodb ...

  9. xcodebuild 自动化打包

    altool 文档 使用xcode自带的xcodebuild 命令通过脚本进行打包 打包->导出ipa, 两行关键的脚本代码 1.Archive xcodebuild archive -arch ...

  10. 【原创】复制知乎“禁止转载”的内容做笔记 - 基于oncopy监听器的简单解决方案

    原理:移除所有oncopy的监听器. 使用: 新建书签,地址设为: javascript: getEventListeners(document).copy.forEach(({listener}) ...