dsu on tree

对于树进行轻重链剖分,对于节点 $x$ ,递归所有轻儿子后消除其影响,递归重儿子,不消除其影响。

然后对于所有轻儿子的子树暴力,从而得到 $x$ 的答案。

对于要消除暴力消除即可。

可以发现如果暴力到点 $u$ 必然是其 $u$ 到根的轻边数量,从而时间复杂度除在统计每个节点答案时其余时间复杂度为 $O(n\log n)$ 。

CF 600E Lomsat gelral

模板题,按上述过程模拟即可。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define int long long
using namespace std;
inline int read(){
int f=,ans=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){ans=ans*+c-'';c=getchar();}
return ans*f;
}
const int MAXN=;
struct node{
int u,v,nex;
}x[MAXN<<];
int head[MAXN],cnt,N,A[MAXN];
void add(int u,int v){
x[cnt].u=u,x[cnt].v=v,x[cnt].nex=head[u],head[u]=cnt++;
}
int Cnt[MAXN],Mx,sum,Ans[MAXN],V,siz[MAXN],son[MAXN];
void dfs(int u,int fath){
siz[u]=;
for(int i=head[u];i!=-;i=x[i].nex){
if(x[i].v==fath) continue;
dfs(x[i].v,u);siz[u]+=siz[x[i].v];
if(siz[son[u]]<siz[x[i].v]) son[u]=x[i].v;
}return;
}
void dfs1(int u,int fath,int w){
Cnt[A[u]]+=w;
if(Cnt[A[u]]>Mx) Mx=Cnt[A[u]],sum=A[u];
else if(Cnt[A[u]]==Mx) sum+=A[u];
for(int i=head[u];i!=-;i=x[i].nex){
if(x[i].v==fath||x[i].v==V) continue;
dfs1(x[i].v,u,w);
}return;
}
void dfs(int u,int fath,int opt){
for(int i=head[u];i!=-;i=x[i].nex){
if(x[i].v==fath||x[i].v==son[u]) continue;
dfs(x[i].v,u,);
}
if(son[u]) dfs(son[u],u,);
V=son[u];dfs1(u,fath,);
Ans[u]=sum;
if(!opt) V=,dfs1(u,fath,-),Mx=sum=;
}
signed main(){
memset(head,-,sizeof(head));
N=read();
for(int i=;i<=N;i++) A[i]=read();
for(int i=;i<N;i++){
int u=read(),v=read();
add(u,v),add(v,u);
}
dfs(,);dfs(,,);
for(int i=;i<=N;i++) printf("%lld ",Ans[i]);printf("\n");
return ;
}

或者可以线段树合并,利用线段树维护颜色个数。

CF 1009F Dominant Indices

可以长链剖分也可以 $dsu$ ,$dsu$ 的时间复杂度 $O(n\log n)$ 。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
inline int read(){
int f=,ans=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){ans=ans*+c-'';c=getchar();}
return f*ans;
}
const int MAXN=;
struct node{
int u,v,nex;
}x[MAXN<<];
int dep[MAXN],cnt,siz[MAXN],son[MAXN],N,head[MAXN];
int Ans[MAXN];
void add(int u,int v){
x[cnt].u=u,x[cnt].v=v,x[cnt].nex=head[u],head[u]=cnt++;
}
void dfs0(int u,int fath){
siz[u]=;dep[u]=dep[fath]+;
for(int i=head[u];i!=-;i=x[i].nex){
if(x[i].v==fath) continue;
dfs0(x[i].v,u);siz[u]+=siz[x[i].v];
if(siz[son[u]]<siz[x[i].v]) son[u]=x[i].v;
}return;
}
int Num[MAXN],Mx,Sum,Lim;
void Add(int u,int fath,int w){
Num[dep[u]]+=w;
if(Num[dep[u]]>Mx) Mx=Num[dep[u]],Sum=dep[u];
else if(Num[dep[u]]==Mx&&dep[u]<Sum) Sum=dep[u];
for(int i=head[u];i!=-;i=x[i].nex){
if(x[i].v==fath||x[i].v==Lim) continue;
Add(x[i].v,u,w);
}return;
}
void dfs1(int u,int fath,int opt){
// cerr<<u<<" "<<fath<<" "<<opt<<endl;
for(int i=head[u];i!=-;i=x[i].nex){
if(x[i].v==fath||x[i].v==son[u]) continue;
dfs1(x[i].v,u,);
}
if(son[u]) dfs1(son[u],u,);Lim=son[u];
Add(u,fath,);Ans[u]=Sum;
Lim=;
if(!opt) Add(u,fath,-),Mx=Sum=;
return;
}
int main(){
// freopen("maker.in","r",stdin);
memset(head,-,sizeof(head));
N=read();
for(int i=;i<N;i++){int u=read(),v=read();add(u,v),add(v,u);}
dfs0(,);dfs1(,,);
for(int i=;i<=N;i++){
printf("%d\n",Ans[i]-dep[i]);
}
return ;
}/*
8
1 2
2 3
1 4
3 5
4 6
5 7
4 8
*/

长链剖分

对于重儿子为 $u$ 下面最深的链所在儿子,可以发现最多到根有 $\sqrt{n}$ 个长链与短链,因为对于每次走到轻边必加上比他深的儿子,可以写成 $1+2+…x=n->x=\sqrt{n}$ 。

如果一个子树 $dp$ 只与深度有关,则可能可以使用长链剖分的方法优化它的复杂度。

详细情况请参考 $link$ 。考虑对于继承每个重儿子的话可以用指针维护,或者数组映射即可。

CF 1009F Dominant Indices

虽然可以 $dsu$ ,但是通过长链剖分可以得到更优的复杂度 $O(n)$ 。时间复杂度为 $O(n)$ 因为每条重链只统计一次。

「POI2014」酒店 Hotel

$n\leq 10^5$ 。考虑 $O(n^2)$ 的树形 $dp$ ,设 $f_{i,j}$ 表示在以 $i$ 为根的子树下到 $i$ 距离为 $j$ 的点的个数,$g_{i,j}$ 表示在以 $i$ 为根的子树上有多少个点对需要经过 $i$ 号点后再走 $j$ 步。

转移考虑当前子树对另一颗子树的贡献与自己的贡献即可。可以发现 $dp$ 的第二维只与深度有关,并且支持合并,长链剖分即可。

一个小建议就是空间可以多开一点。

[WC2010] 重建计划

可以发现将答案二分以后分数规划问题就转换成边数在 $[l,r]$ ,且边权和大于等于 $0$ 是否有解。

考虑将点对答案在 $lca$ 处处理,维护 $f_{i,j}$ 表示以 $i$ 为根的子树下到 $i$ 经过 $j$ 条边的最大边权。而需要做的是 $f$ 一段区间的 $max$ 。

很显然 $f$ 数组支持长链剖分,而 $max$ 操作无法通过指针维护,考虑利用数组映射,同时建线段树维护极值。

dsu on tree 与长链剖分的更多相关文章

  1. CF1009F Dominant Indices(树上DSU/长链剖分)

    题目大意: 就是给你一棵以1为根的树,询问每一个节点的子树内节点数最多的深度(相对于这个子树根而言)若有多解,输出最小的. 解题思路: 这道题用树链剖分,两种思路: 1.树上DSU 首先想一下最暴力的 ...

  2. 2018牛客网暑假ACM多校训练赛(第七场)I Tree Subset Diameter 动态规划 长链剖分 线段树

    原文链接https://www.cnblogs.com/zhouzhendong/p/NowCoder-2018-Summer-Round7-I.html 题目传送门 -  https://www.n ...

  3. BZOJ 3653: 谈笑风生(离线, 长链剖分, 后缀和)

    题意 给你一颗有 \(n\) 个点并且以 \(1\) 为根的树.共有 \(q\) 次询问,每次询问两个参数 \(p, k\) .询问有多少对点 \((p, a, b)\) 满足 \(p,a,b\) 为 ...

  4. 【CF1009F】Dominant Indices(长链剖分)

    [CF1009F]Dominant Indices(长链剖分) 题面 洛谷 CF 翻译: 给定一棵\(n\)个点,以\(1\)号点为根的有根树. 对于每个点,回答在它子树中, 假设距离它为\(d\)的 ...

  5. 【Cf Edu #47 F】Dominant Indices(长链剖分)

    要求每个点子树中节点最多的层数,一个通常的思路是树上启发式合并,对于每一个点,保留它的重儿子的贡献,暴力扫轻儿子将他们的贡献合并到重儿子里来. 参考重链剖分,由于一个点向上最多只有$log$条轻边,故 ...

  6. CF 1009 F Dominant Indices —— 长链剖分+指针

    题目:http://codeforces.com/contest/1009/problem/F 也可以用 dsu on tree 的做法,全局记录一个 dep,然后放进堆里,因为字典序要最小,所以再记 ...

  7. 长链剖分优化dp三例题

    首先,重链剖分我们有所认识,在dsu on tree和数据结构维护链时我们都用过他的性质. 在这里,我们要介绍一种新的剖分方式,我们求出这个点到子树中的最长链长,这个链长最终从哪个儿子更新而来,那个儿 ...

  8. BZOJ4543/BZOJ3522 [POI2014]Hotel加强版(长链剖分)

    题目好神仙--这个叫长链剖分的玩意儿更神仙-- 考虑dp,设\(f[i][j]\)表示以\(i\)为根的子树中到\(i\)的距离为\(j\)的点的个数,\(g[i][j]\)表示\(i\)的子树中有\ ...

  9. CF1009F Dominant Indices——长链剖分优化DP

    原题链接 \(EDU\)出一道长链剖分优化\(dp\)裸题? 简化版题意 问你每个点的子树中与它距离为多少的点的数量最多,如果有多解,最小化距离 思路 方法1. 用\(dsu\ on\ tree\)做 ...

随机推荐

  1. springmvc+ajax异步上传图片

    1.javaweb传统的上传图片方式就是通过form表单提交 <form action="#" method="post" enctype="m ...

  2. C++STL中的unique函数

    头文件:#include<iostream> 函数原型:iterator unique(iterator it_1,iterator it_2); 作用:元素去重,即”删除”序列中所有相邻 ...

  3. Spring Cloud Config教程(五)客户端使用

    要在应用程序中使用这些功能,只需将其构建为依赖于spring-cloud-config-client的Spring引导应用程序(例如,查看配置客户端或示例应用程序的测试用例).添加依赖关系的最方便的方 ...

  4. 【ELK学习】初识ElasticSearch

    ES(elasticsearch) 是一个高可扩展的.开源的全文检索和分析引擎,它允许你存储.检索.分析海量数据,以一种快到近乎实时的速度. ES用例场景: 使用ES存储商品目录.清单,提供检索.输入 ...

  5. 在JS中统计函数执行次数

    一.统计函数执行次数 常规的方法可以使用 console.log 输出来肉眼计算有多少个输出 不过在Chrome中内置了一个 console.count 方法,可以统计一个字符串输出的次数.我们可以利 ...

  6. WebView:是应用程序打开web网页的UI控件后端

    public class WebViewActivity extends Activity { private WebView webView; @Override protected void on ...

  7. 地图服务 纬度、经度对应坐标轴x,y

    记下,供自己参考,中国地区的经纬度,经度大,纬度小 如上海经纬度为:(经度, 纬度)(y, x)(lon, lat) 121.48 31.22 纬度---lat----x轴 经度---lon---y轴

  8. PADS LAYOUT的一般流程

    1.概述    本文档的目的在于说明使用PADS的印制板设计软件PowerPCB进行印制板设计的流程和一些注意事项,为一个工作组的设计人员提供设计规 范,方便设计人员之间进行交流和相互检查. 2.设计 ...

  9. Spring+hibernate 配置实例

    转自:http://www.cnblogs.com/hongten/archive/2012/03/10/java_spring_hibernate.html 项目结构: http://www.cnb ...

  10. Octavia 的实现与分析(OpenStack Rocky)

    目录 文章目录 目录 Octavia 基本对象概念 基本使用流程 软件架构 服务进程清单 代码结构 loadbalancer 创建流程分析 network_tasks.AllocateVIP netw ...