w

https://www.microsoft.com/en-us/research/wp-content/uploads/2011/05/crp-sea.pdf

1 Introduction

The past decade has seen a great deal of research on finding point-to-point shortest paths on road networks [7]. Although Dijkstra’s algorithm [10] runs in almost linear time with very little overhead, it still takes a few seconds on continentalsized graphs. Practical algorithms use a two-stage approach: preprocessing takes a few minutes (or even hours) and produces a (linear) amount of auxiliary data, which is then used to perform queries in real time. Most previous research focused on the most natural metric, driving times. Real-world systems, however, often support other natural metrics as well, such as shortest distance, walking, biking, avoid U-turns, avoid/prefer freeways, or avoid left turns.

We consider the customizable route planning problem, whose goal is to perform real-time queries on road networks with arbitrary metrics. Such algorithms can be used in two scenarios: they may keep several active metrics at once (to answer queries for any of them), or new metrics can be generated on the fly. A system with these properties has obvious attractions. It supports real-time traffic updates and other dynamic scenarios, allows easy customization by handling any combination of standard metrics, and can even provide personalized driving directions (for example, for a truck with height and weight restrictions). To implement such a system, we need an algorithm that allows real-time queries, has fast customization (a few seconds), and keeps very little data for each metric. Most importantly, it must be robust: all three properties must hold for any metric. No existing algorithm meets these requirements.

Customizable Route Planning的更多相关文章

  1. customizable route planning 工业界地图产品的路径规划

    https://www.microsoft.com/en-us/research/publication/customizable-route-planning/?from=http%3A%2F%2F ...

  2. lightoj.1048.Conquering Keokradong(二分 + 贪心)

    Conquering Keokradong Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

  3. Codeforces Gym 100610 Problem K. Kitchen Robot 状压DP

    Problem K. Kitchen Robot Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/10061 ...

  4. Conquering Keokradong && Get the Containers(二分)

    Conquering Keokradong Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

  5. HOJ题目分类

    各种杂题,水题,模拟,包括简单数论. 1001 A+B 1002 A+B+C 1009 Fat Cat 1010 The Angle 1011 Unix ls 1012 Decoding Task 1 ...

  6. 近十年one-to-one最短路算法研究整理【转】

    前言:针对单源最短路算法,目前最经典的思路即标号算法,以Dijkstra算法和Bellman-Ford算法为根本演进了各种优化技术和算法.针对复杂网络,传统的优化思路是在数据结构和双向搜索上做文章,或 ...

  7. 从零开始一起学习SLAM | SLAM有什么用?

    SLAM是 Simultaneous Localization And Mapping的 英文首字母组合,一般翻译为:同时定位与建图.同时定位与地图构建. 「同时定位与地图构建」这几个词,乍一听起来非 ...

  8. 基于智能手机的3D地图导航

    https://www.gpsworld.com/resources/archives/ Going 3D Personal Nav and LBS To enrich user experience ...

  9. 近十年one-to-one最短路算法研究整理

    前言:针对单源最短路算法,目前最经典的思路即标号算法,以Dijkstra算法和Bellman-Ford算法为根本演进了各种优化技术和算法.针对复杂网络,传统的优化思路是在数据结构和双向搜索上做文章,或 ...

随机推荐

  1. P-残缺的棋盘

    Input 输入包含不超过10000 组数据.每组数据包含6个整数r1, c1, r2, c2, r3, c3 (1<=r1, c1, r2, c2, r3, c3<=8). 三个格子A, ...

  2. j网络爬虫之WebMagic

    WebMagic官网:http://webmagic.io/ 注意: 1.在自定义PageProcessor中使用System.out.println(“str”),Spider.create(new ...

  3. Springboot+Mybatis AOP注解动态切换数据源

    在开发中因需求在项目中需要实现多数据源(虽然项目框架是SpringCloud,但是因其中只是单独的查询操作,觉得没必要开发一个项目,所以采用多数据源来进行实现) 1.在配置文件中创建多个数据连接配置 ...

  4. Trait讲解

    <?php /** * Trait解决PHP单继承的一种方法,使开发人员在不同层次结构的类中复用属性和方法 * Trait无法实例化 * Trait不是类,不能被继承,所以不能再Trait中不能 ...

  5. nmap 扫描出某网段内web服务器

    今天碰到一个问题,客户要求在他们内网中扫描出所有web服务器,然后再对web进行渗透测试,共两个网段. 以前我记得用nmap时曾得到过某地址的web服务器数据,比如显示是IIS或apach,但忘了具体 ...

  6. c# wpf 加密文本

    可以加密人们的内容,文本加密. 界面 <Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation& ...

  7. Beta冲刺-(3/3)

    这个作业属于哪个课程 https://edu.cnblogs.com/campus/xnsy/SoftwareEngineeringClass1/ 这个作业要求在哪里 https://edu.cnbl ...

  8. rev 反向输出文件内容

    1.命令功能 rev 按行反向输出文件内容 2.语法格式 rev  file 3.使用范例 [root@localhost ~]# echo {a..k} >> test [root@lo ...

  9. complementary error function

    首先正态分布的概率密度函数为: P{|X-μ|<σ}=2Φ(1)-1=0.6826,  P{|X-μ|<2σ}=2Φ(2)-1=0.9544,  P{|X-μ|<3σ}=2Φ(3)- ...

  10. Linux shell 批量验证端口连通性

    工作中会遇到验证到某某服务器端口是否连通,如果IP或端口多时,用shell还是很省时省力的,看下面的脚本: #!/bin/bash # #database check #set -o nounset ...