参考思路见白书(一本通)

题目链接

题目描述

检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行、每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子。

上面的布局可以用序列2 4 6 1 3 5来描述,第i个数字表示在第i行的相应位置有一个棋子,如下:

行号 1 2 3 4 5 6

列号 2 4 6 1 3 5

这只是跳棋放置的一个解。请编一个程序找出所有跳棋放置的解。并把它们以上面的序列方法输出。解按字典顺序排列。请输出前3个解。最后一行是解的总个数。

//以下的话来自usaco官方,不代表洛谷观点

特别注意: 对于更大的N(棋盘大小N x N)你的程序应当改进得更有效。不要事先计算出所有解然后只输出(或是找到一个关于它的公式),这是作弊。如果你坚持作弊,那么你登陆USACO Training的帐号删除并且不能参加USACO的任何竞赛。我警告过你了!

输入输出格式

输入格式:

一个数字N (6 <= N <= 13) 表示棋盘是N x N大小的。

输出格式:

前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。

输入输出样例

输入样例#1: 复制

6
输出样例#1: 复制

2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4

说明

题目翻译来自NOCOW。

USACO Training Section 1.5

一道硬生生的DFS(当然也是DFS中比较经典的了吧QwQ)

基本思路如下:

首先一看,n≤13,嗯,是打表DFS没错了

那么,我们应该如何的去DFS呢?
首先,我们需要开一些名叫abcd的数组存东西

a数组需要存的是第i个皇后所占的列;

b数组(bool类型)表示的是第i列有没有被占;

c数组(bool类型)表示的是对角线(/)有没有被占;

d数组(bool类型)表示的是对角线(\)有没有被占;

那么,就可以初步确定下来如何去DFS

其实思路十分的简单

只需要在确定每一个皇后之前都判断一下每一步是否可走就行了(显然我们一行放一个)

因为要输出前3组数据,所以这里不得不需要回溯

但还要控制输出组数为3

所以下放代码(显示行号以表友好):

 #include<bits/stdc++.h>

 using namespace std;

 bool d[],b[],c[];
int sum,a[],n; inline int read()//快速读入
{
int X=,w=;
char c=getchar();
while(c<''||c>'')
{
if (c=='-')
{
w=-;
}
c=getchar();
}
while(c>=''&&c<='')
{
X=(X<<)+(X<<)+c-'';
c=getchar();
}
return X*w;
} inline void out(int n)//快速输出
{
if(n>=)
{
out(n/);
}
putchar(n%+'');
} inline int print()//输出答案
{
sum++;
if(sum<=)//控制输出组数
{
for(int i=;i<=n;i++)//输出每组的答案
{
out(a[i]);
printf(" ");
}
printf("\n");
}
} inline void search(int i)//DFS
{
if(i>n)//判断边界条件
{
print();
return;
}
else
{
int j;
for(j=;j<=n;j++)//一波for
{
if((!b[j])&&(!c[i+j])&&!(d[i-j+n]))//需要保证该列,该左对角线和该右对角线全都没有另一个皇后
{
a[i]=j;//存一下答案
b[j]=;//占领第j列
c[i+j]=;//占领对角线"/"
d[i-j+n]=;//占领对角线"\"
search(i+);//递归的DFS
b[j]=;//回溯
c[i+j]=;//回溯
d[i-j+n]=;//回溯
}
}
} } int main()
{
n=read();//读入
search();//从1开始DFS
out(sum);//输出答案组数
return ;
}

非常漂亮

【洛谷P1219 八皇后】的更多相关文章

  1. 洛谷 P1219 八皇后【经典DFS,温习搜索】

    P1219 八皇后 题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序 ...

  2. 洛谷 P1219八皇后

    把全部,在这251秒,赌上! ——<游戏人生zero> 题目:https://www.luogu.org/problem/P1219 八皇后是一道非常非常非常经典的深搜+回溯的题目. 这道 ...

  3. 洛谷 p1219 八皇后

    刚参加完蓝桥杯 弱鸡错了好几道..回头一看确实不难 写起来还是挺慢的 于是开始了刷题的道路 蓝桥杯又名搜索杯 暴力杯...于是先从dfs刷起 八皇后是很经典的dfs问题 洛谷的这道题是这样的 上面的布 ...

  4. 洛谷P1219 八皇后【dfs】

    题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...

  5. 洛谷 P1219 八皇后题解

    题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...

  6. 洛谷P1219 八皇后

    题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...

  7. 洛谷 - P1219 - 八皇后 - dfs

    https://www.luogu.org/problemnew/show/P1219 一开始朴素检查对角线就TLE了,给对角线编码之后压缩了13倍时间? 找了很久的bug居然是&&写 ...

  8. 洛谷P1219 八皇后 我。。。。。。

    代码1    (学弟版) #include<bits/stdc++.h>using namespace std;int l[15];bool s[15];                  ...

  9. 洛谷P2105 K皇后

    To 洛谷.2105 K皇后 题目描述 小Z最近捡到了一个棋盘,他想在棋盘上摆放K个皇后.他想知道在他摆完这K个皇后之后,棋盘上还有多少了格子是不会被攻击到的. (Ps:一个皇后会攻击到这个皇后所在的 ...

随机推荐

  1. 中标麒麟(linux)mysql配置记录

    刚装好mysql时,使用正常,后来再次使用时,连接不成功.(虚拟机中) 配置网络有问题, 1.我将ifcfg-*的两个文件备份后删除了. 2.点击右下角的小电脑,重新新建一个网络连接.把网络接入主机的 ...

  2. [BZOJ 4332] [JSOI2012]分零食(DP+FFT)

    [BZOJ 4332] [JSOI2012]分零食(DP+FFT) 题面 同学们依次排成了一列,其中有A位小朋友,有三个共同的欢乐系数O,S和U.如果有一位小朋友得到了x个糖果,那么她的欢乐程度就是\ ...

  3. git学习指南

    近来学习Git,苦寻资料下发现廖雪峰老师的教程很好,在此推荐传送门 附每节总结,方便查阅 创建版本库 初始化一个Git仓库,使用git init命令. 添加文件到Git仓库,分两步: 使用命令git ...

  4. 6-3 如何解析简单的XML文档

    元素节点.元素树 >>> from xml.etree.ElementTree import parse >>> help(parse) Help on funct ...

  5. FTP连接不上的解决方法

    1.注意内网IP和外网IP 2.检查ftp服务是否启动 (面板首页即可看到) 3.检查防火墙20端口 ftp 21端口及被动端口39000 - 40000是否放行 (如是腾讯云/阿里云等还需检查安全组 ...

  6. 【学习总结】快速上手Linux玩转典型应用-第1章-课程介绍

    课程目录链接 快速上手Linux玩转典型应用-目录 1. Linux有什么用 2. 课程安排 3. 课程收获 基本运维能力,等等 END

  7. Ubuntu系统下Bazel编译Tensorflow环境

    编写此文主要为了介绍在Ubuntu16.04上搭建Tensorflow-lite编译环境,涉及目标硬件为Armv7架构,8核Cortex-A7. 1.开发环境介绍: OS:Ubuntu16.04 64 ...

  8. Java web项目搭建系列之二 Jetty下运行项目

    在项目pom.xml文件中添加Jetty运行配置 在pom.xml文件project节点下插入如下代码: <build> <plugins> <plugin> &l ...

  9. 分布式FastDfs+nginx缓存高可用集群构建

    介绍: FastDFS:开源的高性能分布式文件系统:主要功能包括:文件存储,文件同步和文件访问,以及高容量和负载平衡 FastDFS:角色:跟踪服务器(Tracker Server).存储服务器(St ...

  10. 2019 计蒜之道 初赛 第二场 B. 百度AI小课堂-上升子序列(简单) ( 实现)

    题目背景 ​91029102 年 99 月 22 日,百度在 X 市 XX 中学举办的第一场 AI 知识小课堂大获好评!同学们对矩阵的掌握非常棒. 今天的 AI 知识小课堂的第二场开讲啦.本场 AI ...