[CSP-S模拟测试]:环(图论+期望)
题目传送门(内部题79)
输入格式
第一行读入两个整数$n,e$表示节点数及$cwystc$已确定的有向边边数。
接下来$e$行,每行两个整数$x,y$描述$cwystc$确定的边。
输出格式
输出一个整数表示期望陪妹子的天数。
样例
见下发文件
数据范围与提示
对于$30\%$的数据:$n\leqslant 300$
对于另外i$20\%$的数据:$e=0$
对于另外$20\%$的数据:$e=\frac{n\times (n-1)}{2}$
对于$100\%$的数据:$n\leqslant 100,000,e\leqslant 100,000$
题解
先转化一下题意,即让我们求竞赛图的期望最小环的个数。
而对于一张竞赛图,其要么是一张拓扑图,要么存在一个三元环。
因为该图不存在环,于是问题转化为三元环计数。
考虑容斥,不妨设$p[i]$表示点$i$的出度,那么对于三元组$(i,x,y)\{x\in p[i],y\in p[i],x\neq y\}$不组成三元环,而且这样的三元组只会在第$i$点枚举一次。
不妨再设$q[i]$表示连接点$i$未确定的边数,那么期望要减去:
$$\frac{p[i]\times (p[i]-1)}{2}+p[i]\times \frac{q[i]}{2}+\frac{q[i]\times (1-q[i])}{2}\times \frac{1}{4}$$
时间复杂度:$\Theta(n+e)$。
期望得分:$100$分。
实际得分:$100$分。
代码时刻
#include<bits/stdc++.h>
using namespace std;
const int mod=1000000007;
const int two=500000004;
const int six=166666668;
const int eig=125000001;
int n,e;
int du[100001],p[100001],q[100001];
long long ans;
long long qpow(long long x,long long y)
{
long long res=1;
while(y)
{
if(y&1)res=res*x%mod;
x=x*x%mod;
y>>=1;
}
return res;
}
int main()
{
scanf("%d%d",&n,&e);
while(e--)
{
int x,y;
scanf("%d%d",&x,&y);
du[x]++;du[y]++;p[x]++;
}
ans=1LL*n*(n-1)%mod*(n-2)%mod*six%mod;
for(int i=1;i<=n;i++)
{
q[i]=n-du[i]-1;
ans=(ans-1LL*p[i]*(p[i]-1)%mod*two%mod-1LL*p[i]*q[i]%mod*two%mod-1LL*q[i]*(q[i]-1)%mod*eig%mod+mod)%mod;
}
printf("%lld\n",ans);
return 0;
}
rp++
[CSP-S模拟测试]:环(图论+期望)的更多相关文章
- [CSP-S模拟测试]:走路(期望DP+分治消元)
题目传送门(内部题100) 输入格式 第一行两个整数$n,m$,接下来$m$行每行两个整数$u,v$表示一条$u$连向$v$的边.不保证没有重边和自环. 输出格式 $n-1$行每行一个整数,第$i$行 ...
- [CSP-S模拟测试]:B(期望DP)
题目传送门(内部题151) 输入格式 第一行一个整数$N$. 第二行$N$个整数,第$i$个为$a_i$. 输出格式 一行一个整数,表示答案.为避免精度误差,答案对$323232323$取模. 即设答 ...
- [CSP-S模拟测试]:简单的期望(DP)
题目描述 从前有个变量$x$,它的初始值已给出. 你会依次执行$n$次操作,每次操作有$p\%$的概率令$x=x\times 2$,$(100−p)\%$的概率令$x=x+1$. 假设最后得到的值为$ ...
- [CSP-S模拟测试]:chemistry(期望DP+组合数学)
题目传送门(内部题27) 输入格式 第一行有$4$个整数$n,k,p,q$.第二行有$n$个整数$a_i$.接下来有$n-1$行,每行有两个整数$u,v$,表示$u$与$v$之间通过化学单键连接. 输 ...
- [考试反思]1109csp-s模拟测试106:撞词
(撞哈希了用了模拟测试28的词,所以这次就叫撞词吧) 蓝色的0... 蓝色的0... 都该联赛了还能CE呢... 考试结束前15分钟左右,期望得分300 然后对拍发现T2伪了写了一个能拿90分的垃圾随 ...
- NOIP模拟测试17&18
NOIP模拟测试17&18 17-T1 给定一个序列,选取其中一个闭区间,使得其中每个元素可以在重新排列后成为一个等比数列的子序列,问区间最长是? 特判比值为1的情况,预处理比值2~1000的 ...
- DotNetCore跨平台~Moq框架实现模拟测试
回到目录 当我们进行软件开发时,一般会写单元测试,而对于业务情景来说,一般是测试它的业务逻辑准确性,对于你的测试数据是否来自数据库还是文件,是否为真实还是模拟,并不是很关心!我关心的就是我的业务逻辑是 ...
- 利用Python中的mock库对Python代码进行模拟测试
这篇文章主要介绍了利用Python中的mock库对Python代码进行模拟测试,mock库自从Python3.3依赖成为了Python的内置库,本文也等于介绍了该库的用法,需要的朋友可以参考下 ...
- Mockito:一个强大的用于Java开发的模拟测试框架
https://blog.csdn.net/zhoudaxia/article/details/33056093 介绍 本文将介绍模拟测试框架Mockito的一些基础概念, 介绍该框架的优点,讲解应用 ...
随机推荐
- new 和 malloc 的区别 及使用
Malloc: 定义上:malloc memory allocation 动态内存分配 是c中的一个函数 使用方法: extern void *malloc(unsigned int num_byt ...
- MySQL-快速入门(1)基本数据库、表操作语句
1.创建数据库 create database db_name;show create database db_name\G; //查看数据创建语句show databases; //查看当前创建的数 ...
- hive中的索引创建
1.在hive中创建索引所在表 create table if not exists h_odse.hxy(id int,name string,hobby array<string>,a ...
- FFmpeg SDK开发模型之中的一个:解码器
简单介绍 本例解说了怎样使用ffmpeg SDK解码媒体文件: 參考源代码是ffmpeg 自带的apiexample.c 一.源代码#include <stdlib.h>#include ...
- Redis---使用场景
3.使用场景 计数器 可以对String进行自增自减运算,从而实现计算器功能. Redis这种内存型数据库的读写性能非常高,很适合存储频繁读写的及数量 缓存 将热点数据放到内存中,设置内存 ...
- HTML回顾之表格
HTML表格 由什么组成? 表格由<table>标签来定义.每个表格有若干行(<tr>标签来定义),每行被分割成若干单元格(<td>标签来定义). td值表格数据, ...
- PAT Advanced 1002 A+B for Polynomials (25 分)(隐藏条件,多项式的系数不能为0)
This time, you are supposed to find A+B where A and B are two polynomials. Input Specification: Each ...
- deletefile 与KILL
1.Kill 语句 从磁盘中删除文件.语法Kill pathname必要的 pathname 参数是用来指定一个文件名的字符串表达式.pathname 可以包含目录或文件夹.以及驱动器.说明在 Mic ...
- DevExpress v18.2版本亮点——Office File API 篇
行业领先的.NET界面控件——DevExpress v18.2版本亮点详解,本文将介绍了DevExpress Office File API v18.2 的版本亮点,新版30天免费试用!点击下载> ...
- ubuntu16.04 下安装jdk
1. 在/usr/lib目录下新建jdk mkdir jdk 2. 执行文件移动 sudo mv ./resource/jdk-8u191-linux-x64.tar. ...