SEERC 2018 I - Inversion (Gym - 101964I) DP
Gym - 101964I
题意
有一个数组\(p\),如果满足\(i<j,p_i>p_j\),则\(i,j\)之间就有一条边相连,问存在多少个集合满足集合内的元素互不相连,且集合外的元素都有边连到集合内。
思路
现在给你\(p\)数组相连的边, 然后就可以暴力还原\(p\)数组,可以先记录有当前\(i\)位置之小于\(i\)位置的数字的数数量\(k\),然后从小到大找能用的第\(k\)大的数字就是位置\(i\)的数字
还原完\(p\)数组,我们可以发现如果你的子序列是上升序列,那么它们直接互不相连,而要让其他元素都连到这个集合里,我们要找不可扩展的上升序列(就是后面没有更大的数字,前面没有更小的数字),然后就会发现剩下的元素就会连到集合内,不然就会被加集合内
所以,这题就是还原\(p\)数组,然后找到不可扩展的上升序列有多少个,就是答案了。
代码
#include<bits/stdc++.h>
#define mes(a, b) memset(a, b, sizeof a)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxm = 1e6+10;
const int maxn = 1e5+10;
int n, m, T;
int a[maxn], in[maxn], vis[maxn];
ll ans, dp[maxn];
int main(){
scanf("%d%d", &n, &m);
int x, y;
for(int i = 1; i <= m;i++){
scanf("%d%d", &x, &y);
in[min(x, y)]++;
}
for(int i = 1; i <= n; i++){
for(int j = 1; j <= n; j++){
if(!vis[j]){
if(in[i]) in[i]--;
else{
vis[j] = 1;
a[i] = j;
break;
}
}
}
}
for(int i = 1; i <= n; i++){
int Max = 0;
for(int j = i-1; j >= 1; j--){
if(a[i] > a[j] && a[j] > Max){ //如果当前a[j]比Max小,那么肯定a[j]有被Max的数更新过,就不要更新了
Max = a[j];
dp[i] += dp[j];
in[j]++;
}
}
if(!dp[i])
dp[i] = 1;
}
ans = 0;
for(int i = 1; i <= n; i++){
if(!in[i])
ans += dp[i];
}
printf("%lld\n", ans);
return 0;
}
SEERC 2018 I - Inversion (Gym - 101964I) DP的更多相关文章
- 2018-2019 ACM-ICPC Southeastern European Regional Programming Contest (SEERC 2018)
layout: post title: 2018-2019 ACM-ICPC Southeastern European Regional Programming Contest (SEERC 201 ...
- luoguP4383 [八省联考2018]林克卡特树(树上dp,wqs二分)
luoguP4383 [八省联考2018]林克卡特树(树上dp,wqs二分) Luogu 题解时间 $ k $ 条边权为 $ 0 $ 的边. 是的,边权为零. 转化成选正好 $ k+1 $ 条链. $ ...
- SEERC 2018 Inversion
题意: 如果p数组中 下标i<j且pi>pj 那么点i j之间存在一条边 现在已经知道边,然后求p数组 在一张图中,求有多少个点集,使得这个点集里面的任意两点没有边 不在点集里面的点至少有 ...
- LOJ #2802. 「CCC 2018」平衡树(整除分块 + dp)
题面 LOJ #2802. 「CCC 2018」平衡树 题面有点难看...请认真阅读理解题意. 转化后就是,给你一个数 \(N\) ,每次选择一个 \(k \in [2, N]\) 将 \(N\) 变 ...
- LOJ #2540. 「PKUWC 2018」随机算法(概率dp)
题意 LOJ #2540. 「PKUWC 2018」随机算法 题解 朴素的就是 \(O(n3^n)\) dp 写了一下有 \(50pts\) ... 大概就是每个点有三个状态 , 考虑了但不在独立集中 ...
- LOJ 2743(洛谷 4365) 「九省联考 2018」秘密袭击——整体DP+插值思想
题目:https://loj.ac/problem/2473 https://www.luogu.org/problemnew/show/P4365 参考:https://blog.csdn.net/ ...
- 2018-2019 ACM-ICPC Southeastern European Regional Programming Contest (SEERC 2018) Solution
A. Numbers Unsolved. B. Broken Watch Solved. 题意: 一个圆盘上,有等分的n块区域,有三根指针,当三根指针分别位于两块区域的交界处时 指针的三点相连会形成一 ...
- 2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018) A. Altruistic Amphibians (DP)
题目链接:https://codeforc.es/gym/101933/problem/A 题意:有 n 只青蛙在一个坑里面,要求可以跳出坑的青蛙的最大数量.每个青蛙有 3 种属性:l 为青蛙一次可以 ...
- BalkanOI 2018 Parentrises(贪心+基础DP)
题意 https://loj.ac/problem/2713 思路 对于 \(\text{P1}\) 的档,首先可以看出 \(O(n^3)\) 的方法,即用 \(O(n^3)\) 的 \(\text{ ...
随机推荐
- android7.0对于SharedPreferences设置模式的限制
错误信息: 03-28 10:16:12.701 830 932 E AndroidRuntime: FATAL EXCEPTION: Thread-903-28 10:16:12.701 ...
- MySQL - 修改数据库文件物理路径
一共两步: 修改my.ini文件的datadir: 将修改前datadir路径下的文件复制到修改后的datadir路径. 注意: my.ini可能有多个,windows 系统可以在 MySQL 服务的 ...
- 疑难杂症——解决 Cinder 僵尸卷问题
目录 目录 问题描述 问题解决 最后 问题描述 Cinder 的僵尸卷一般是因为操作不当导致分配的卷无法正常使用且无法正常分离或删除. 问题解决 解决僵尸卷问题的思路类似解决 Linux 系统中的僵尸 ...
- 单例模式(Singleton Patten)
顾名思义,单例模式就是只有一个实例,不管怎样,使用了单例模式的类在系统中只有一个对象被访问到.Java中单例模式定义:“一个类有且仅有一个实例,并且这个类会自行实例化,实例化时候的对象可以提供给整个系 ...
- Learning OSG programing---Multi Camera in Multi window 在多窗口中创建多相机
这个例子演示了在多个窗口中创建多个相机,函数的代码如下: void multiWindowMultipleCameras(osgViewer::Viewer& viewer,bool mult ...
- Learning OSG programing---Multi Camera in one window 在单窗口中创建多相机
在学习OSG提供的例子osgCamera中,由于例子很长,涉及很多细节,考虑将其分解为几个小例子.本文介绍实现在一个窗口中添加多个相机的功能. 此函数接受一个Viewer引用类型参数,设置图形上下文的 ...
- Yii中CreateUrl的使用总结
在Yii中经常要生成URL,不管是为了自动跳转还是仅仅是一个链接.下面对Yii中的URL生成做了一个总结.提示:以下controllerX代表控制器X,actionX代表方法X.在Controller ...
- UVAlive 6756 Increasing Shortest Path
We all love short and direct problems, it is easier to write, read and understand the problem statem ...
- cocos2d-x 3.0正式版创建project笔记
cocos2d-x 3.0正式版创建project笔记 不知道Beta版那个高大上的对话框哪里去鸟,正式版又回归到命令行,不知道触碰如此频繁的玩弄追随者的编程习惯是出于什么心理,假设不是为了这 ...
- MyBatis 配置/注解 SQL CRUD 经典解决方案(2019.08.15持续更新)
本文旨在记录使用各位大神的经典解决方案. 2019.08.14 更新 Mybatis saveOrUpdate SelectKey非主键的使用 MyBatis实现SaveOrUpdate mybati ...