Description

有一个长度为 n 的 01 串,你可以每次将相邻的 k 个字符合并,得到一个新的字符并获得一定分数。得到的新字
符和分数由这 k 个字符确定。你需要求出你能获得的最大分数。

Input

第一行两个整数n,k。接下来一行长度为n的01串,表示初始串。接下来2k行,每行一个字符ci和一个整数wi,ci
表示长度为k的01串连成二进制后按从小到大顺序得到的第i种合并方案得到的新字符,wi表示对应的第i种方案对应
获得的分数。1<=n<=300,0<=ci<=1,wi>=1,k<=8

Output

输出一个整数表示答案

Sample Input

3 2
101
1 10
1 10
0 20
1 30

Sample Output

40
//第3行到第6行表示长度为2的4种01串合并方案。00->1,得10分,01->1得10分,10->0得20分,11->1得30分。

Solution

考虑区间DP。记f[i][j][k]表示把[i,j]区间内的数都合并成k的最大价值。因为k<=8,所以可以用一个二进制数来把状态压起来。

考虑如何转移,注意到只有长度是k的线段才可以合并成一个,所以,长度在模k-1意义下余1的线段一定只会被合并成1个数,所以,我们每次转移的时候只要枚举长度在模k-1意义下为1的前(后)缀,然后再枚举2^k的状态即可。时间复杂度O(n^3*2^k/k^2)。

Code

 #include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath> #ifdef WIN32
#define LL "%I64d"
#else
#define LL "%lld"
#endif #ifdef CT
#define debug(...) printf(__VA_ARGS__)
#define setfile()
#else
#define debug(...)
#define filename ""
#define setfile() freopen(filename".in", "r", stdin); freopen(filename".out", "w", stdout)
#endif #define R register
#define getc() (S == T && (T = (S = B) + fread(B, 1, 1 << 15, stdin), S == T) ? EOF : *S++)
#define dmax(_a, _b) ((_a) > (_b) ? (_a) : (_b))
#define dmin(_a, _b) ((_a) < (_b) ? (_a) : (_b))
#define cmax(_a, _b) (_a < (_b) ? _a = (_b) : 0)
#define cmin(_a, _b) (_a > (_b) ? _a = (_b) : 0)
#define cabs(_x) ((_x) < 0 ? (- (_x)) : (_x))
char B[ << ], *S = B, *T = B;
inline int F()
{
R char ch; R int cnt = ; R bool minus = ;
while (ch = getc(), (ch < '' || ch > '') && ch != '-') ;
ch == '-' ? minus = : cnt = ch - '';
while (ch = getc(), ch >= '' && ch <= '') cnt = cnt * + ch - '';
return minus ? -cnt : cnt;
}
#define maxn 666
int str[maxn], to[maxn];
long long f[][][], val[maxn];
int main()
{
// setfile();
R int n = F(), k = F();
for (R int i = ; i <= n; ++i)
{
R char ch = getc();
while (ch < '' || ch > '') ch = getc();
str[i] = ch - '';
}
for (R int i = ; i < << k; ++i)
{
to[i] = F();
val[i] = F();
}
memset(f, -, sizeof (f)); R long long inf = f[][][];
for (R int i = ; i <= n; ++i) f[i][i][str[i]] = ;
for (R int len = ; len <= n; ++len)
{
R int l = len - ; while (l >= k) l -= k - ;
for (R int i = , j = len; j <= n; ++i, ++j)
{
R long long *tmp = f[i][j];
for (R int mid = j; mid > i; mid -= k - )
for (R int s = ; s < ( << l); ++s)
{
cmax(tmp[s << ], f[i][mid - ][s] + f[mid][j][]);
cmax(tmp[s << | ], f[i][mid - ][s] + f[mid][j][]);
}
if (l == k - )
{
R long long g[]; memset(g, -, sizeof (g));
for (R int s = ; s < ( << k); ++s)
cmax(g[to[s]], tmp[s] + val[s]);
tmp[] = g[]; tmp[] = g[];
}
// if (i == 1 && j == 2) printf("%lld\n", f[i][j][0] );
}
}
/* for (R int i = 1; i <= n; ++i)
for (R int j = i; j <= n; ++j)
for (R int s = 0; s < 1 << k; ++s)
printf("f[%d][%d][%d] = %lld\n", i, j, s, f[i][j][s] );*/
R long long ans = ;
for (R int i = ; i < ( << k); ++i)
cmax(ans, f[][n][i]);
printf("%lld\n", ans );
return ;
}
/*
3 2
101
1 10
1 10
0 20
1 30
*/

【BZOJ4565】 [Haoi2016]字符合并的更多相关文章

  1. BZOJ4565 [Haoi2016]字符合并

    题意 有一个长度为\(n\)的\(01\)串,你可以每次将相邻的\(k\)个字符合并,得到一个新的字符并获得一定分数.得到的新字符和分数由这\(k\)个字符确定.你需要求出你能获得的最大分数. \(n ...

  2. BZOJ4565 HAOI2016字符合并(区间dp+状压dp)

    设f[i][j][k]为将i~j的字符最终合并成k的答案.转移时只考虑最后一个字符是由哪段后缀合成的.如果最后合成为一个字符特殊转移一下. 复杂度看起来是O(n32k),实际常数极小达到O(玄学). ...

  3. [BZOJ4565][HAOI2016]字符合并(区间状压DP)

    https://blog.csdn.net/xyz32768/article/details/81591955 首先区间DP和状压DP是比较明显的,设f[L][R][S]为将[L,R]这一段独立操作最 ...

  4. 2018.10.25 bzoj4565: [Haoi2016]字符合并(区间dp+状压)

    传送门 当看到那个k≤8k\le 8k≤8的时候就知道需要状压了. 状态定义:f[i][j][k]f[i][j][k]f[i][j][k]表示区间[i,j][i,j][i,j]处理完之后的状态为kkk ...

  5. 【BZOJ】4565: [Haoi2016]字符合并

    4565: [Haoi2016]字符合并 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 690  Solved: 316[Submit][Status ...

  6. [Haoi2016]字符合并 题解

    tijie 时间限制: 2 Sec  内存限制: 256 MB 题目描述 有一个长度为 n 的 01 串,你可以每次将相邻的 k 个字符合并,得到一个新的字符并获得一定分数.得到的新字 符和分数由这 ...

  7. 题解 [HAOI2016]字符合并

    题目传送门 Description 有一个长度为 \(n\) 的 \(01\) 串,你可以每次将相邻的 k 个字符合并,得到一个新的字符并获得一定分数. 得到的新字符和分数由这 k 个字符确定.你需要 ...

  8. 【BZOJ 4565】 [Haoi2016]字符合并 区间dp+状压

    考试的时候由于总是搞这道题导致爆零~~~~~(神™倒序难度.....) 考试的时候想着想着想用状压,但是觉得不行又想用区间dp,然而正解是状压着搞区间,这充分说明了一件事,状压不是只是一种dp而是一种 ...

  9. [HAOI2016]字符合并

    Luogu3736 很容易想到直接DP,关键是枚举顺序. \(1.\)设后一段构成最后一个点,前一段构成前面的点,那么能得到\(1\)个点的数量要求 : \(1,k,2k-1...\)相差\(k-1\ ...

随机推荐

  1. AJAX得基本使用

    直接上案例:

  2. [转帖]基于VIM漏洞CVE-2019-12735的VIM宏后门病毒详解

    基于VIM漏洞CVE-2019-12735的VIM宏后门病毒详解 不明觉厉 只要是人做的东西 就会有bug 就会有安全问题 就看发现bug 或者是发现安全问题 有没有收益了 会用linux的都是比较熟 ...

  3. JNDI的初步理解

    1.JDNI是什么意思? 答:JNDI是 java naming and directory interface 的缩写,是j2ee开发中的一种重要的规范 2.JNDI有什么用? 答:如果没有JNDI ...

  4. spring boot1.1 idea + springboot + mybatis(mybatis-generator) +mysql +html实现简单的登录注册

    前言 这两年springboot比较火,而我平时的工作中不怎么使用spring boot,所以工作之余就自己写写项目练练手,也跟大家一起学习. 打算从最开始的搭架子,登录注册,到后台管理的增删改查,业 ...

  5. php中文网--JavaScript

    PHP中文网:http://www.php.cn/course/18.html 常用的两个客户端输出方法 document.write("你好呀js"); 描述:在网页的<b ...

  6. filebeat收集日志传输到Redis集群,logstash从Redis集群中拉取数据

    前提:已配置好Redis集群,并设置的有统一的访问密码 架构是filebeat-->redis集群-->logstash->elasticsearch,需要修改filebeat的输出 ...

  7. Doker GRPC "Connection reset by peer"

    https://success.docker.com/article/ipvs-connection-timeout-issue https://forums.docker.com/t/setting ...

  8. git 计算commit

    转自:https://www.cnblogs.com/jwentest/p/8186712.html#!/bin/bash f1="$1*" f2="$2*" ...

  9. Vue安装与简单使用

    Vue入门 使用Typora打开https://pan.baidu.com/s/1Mf3ZFSthdVUQevqWr777eA 提取码: hg9b vue中文官网教学 安装与使用,我也经常看这个 点击 ...

  10. CentOS 7.6 下载和安装

    一. CentOS 7.6 下载 官网下载地址:https://www.centos.org/download/ 选择Minimal ISO 选择适合自己的下载路径即可. 二.CentOS 7.6 安 ...