题目链接:HDU 5572

Problem Description

On an infinite smooth table, there's a big round fixed cylinder and a little ball whose volume can be ignored.

Currently the ball stands still at point \(A\), then we'll give it an initial speed and a direction. If the ball hits the cylinder, it will bounce back with no energy losses.

We're just curious about whether the ball will pass point \(B\) after some time.

Input

First line contains an integer \(T\), which indicates the number of test cases.

Every test case contains three lines.

The first line contains three integers \(O_x\), \(O_y\) and \(r\), indicating the center of cylinder is \((O_x, O_y)\) and its radius is \(r\).

The second line contains four integers \(A_x\), \(A_y\), \(V_x\) and \(V_y\), indicating the coordinate of \(A\) is \((A_x, A_y)\) and the initial direction vector is \((V_x, V_y)\).

The last line contains two integers \(B_x\) and \(B_y\), indicating the coordinate of point \(B\) is \((B_x,B_y)\).

⋅ \(1 ≤ T ≤ 100.\)

⋅ \(|O_x|,|O_y|≤ 1000.\)

⋅ \(1 ≤ r ≤ 100.\)

⋅ \(|A_x|,|A_y|,|B_x|,|B_y|≤ 1000.\)

⋅ \(|V_x|,|V_y|≤ 1000.\)

⋅ \(V_x≠0 or V_y≠0.\)

⋅ both \(A\) and \(B\) are outside of the cylinder and they are not at same position.

Output

For every test case, you should output " Case #x: y", where \(x\) indicates the case number and counts from \(1\). \(y\) is " \(Yes\)" if the ball will pass point \(B\) after some time, otherwise \(y\) is " \(No\)".

Sample Input

2
0 0 1
2 2 0 1
-1 -1
0 0 1
-1 2 1 -1
1 2

Sample Output

Case #1: No
Case #2: Yes

Source

2015ACM/ICPC亚洲区上海站-重现赛(感谢华东理工)

Solution

题意

在光滑平面上有一个圆,圆外有两点 \(a\),\(b\),给定 \(a\) 的方向向量,求 \(a\) 运动一段时间后能否到达 \(b\)(\(a\) 碰到圆后没有反弹没有能量损失)。

思路

分类讨论一下。

点 \(a\) 的运动在圆外或者与圆相切时直接判断。

注意是射线,下图的情况是不行的。

相交时如果点 \(b\) 在圆的另一边也是不行的。

相交时有两种情况,一种是不经过反射就到达点 \(b\),另一种是经过反射才到达点 \(b\)。

反射后的射线求一下对称点即可。(代码中的 P3 和 P4 点就是下图中的两点)

模板来自kuangbin的计算几何模板。

Code

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef double db;
const db eps = 1e-8;
const db inf = 1e18;
const db pi = acos(-1.0); inline int dcmp(db x) {
if(fabs(x) < eps) return 0;
return x > 0? 1: -1;
} struct Point{
double x,y;
Point(){}
Point(double _x,double _y){
x = _x;
y = _y;
}
void input(){
scanf("%lf%lf",&x,&y);
}
bool operator == (Point b)const{
return dcmp(x-b.x) == 0 && dcmp(y-b.y) == 0;
}
bool operator < (Point b)const{
return dcmp(x-b.x)== 0?dcmp(y-b.y)<0:x<b.x;
}
Point operator -(const Point &b)const{
return Point(x-b.x,y-b.y);
}
double operator ^(const Point &b)const{
return x*b.y - y*b.x;
}
double operator *(const Point &b)const{
return x*b.x + y*b.y;
}
double len(){
return hypot(x,y);
}
double len2(){
return x*x + y*y;
}
double distance(Point p){
return hypot(x-p.x,y-p.y);
}
db dis2(const Point a) {
return pow(x - a.x, 2) + pow(y - a.y, 2);
}
db dis(const Point a) {
return sqrt(dis2(a));
}
Point operator +(const Point &b)const{
return Point(x+b.x,y+b.y);
}
Point operator *(const double &k)const{
return Point(x*k,y*k);
}
Point operator /(const double &k)const{
return Point(x/k,y/k);
}
double rad(Point a,Point b){
Point p = *this;
return fabs(atan2( fabs((a-p)^(b-p)),(a-p)*(b-p) ));
}
Point trunc(double r){
double l = len();
if(!dcmp(l))return *this;
r /= l;
return Point(x*r,y*r);
}
}; struct Line{
Point s,e;
Line(){}
Line(Point _s,Point _e){
s = _s;
e = _e;
}
void input(){
s.input();
e.input();
}
void adjust(){
if(e < s)swap(s,e);
}
double length(){
return s.distance(e);
}
double angle(){
double k = atan2(e.y-s.y,e.x-s.x);
if(dcmp(k) < 0)k += pi;
if(dcmp(k-pi) == 0)k -= pi;
return k;
}
int relation(Point p){
int c = dcmp((p-s)^(e-s));
if(c < 0)return 1;
else if(c > 0)return 2;
else return 3;
}
double dispointtoline(Point p){
return fabs((p-s)^(e-s))/length();
}
// 点 p 在直线上的投影
Point lineprog(Point p){
return s + ( ((e-s)*((e-s)*(p-s)))/((e-s).len2()) );
}
// 点 p 关于直线的对称点
Point symmetrypoint(Point p){
Point q = lineprog(p);
return Point(2*q.x-p.x,2*q.y-p.y);
}
}; struct Circle{
Point p;
double r;
Circle(){}
Circle(Point _p,double _r){
p = _p;
r = _r;
}
void input(){
p.input();
scanf("%lf",&r);
} int relationline(Line v){
double dst = v.dispointtoline(p);
if(dcmp(dst-r) < 0)return 2;
else if(dcmp(dst-r) == 0)return 1;
return 0;
}
// 直线和圆的交点
int pointcrossline(Line v,Point &p1,Point &p2){
if(!(*this).relationline(v))return 0;
Point a = v.lineprog(p);
double d = v.dispointtoline(p);
d = sqrt(r*r-d*d);
if(dcmp(d) == 0){
p1 = a;
p2 = a;
return 1;
}
p1 = a + (v.e-v.s).trunc(d);
p2 = a - (v.e-v.s).trunc(d);
return 2;
}
}; int main() {
int T;
scanf("%d", &T);
int kase = 0;
while(T--) {
Circle o;
o.input();
Point a, b, c;
a.input();
Point v;
v.input(); // 方向向量
b.input();
c = a + v;
Line l = Line(a, c); // 射线ac代表a运动的方向
Point p1, p2, p3;
int cnt = o.pointcrossline(l, p1, p2); // 求直线ac与圆的交点 if(cnt == 2) { // 判断交点在线段外还是线段内
if((p1 - a)*(c - a) < 0) {
cnt = 0;
}
}
if(cnt == 0 || cnt == 1) { // 没有交点或者直线ac与圆相切
// 判断射线ac是否经过点b
if(dcmp((b - a)^(c - a)) == 0 && dcmp((b - a)*(c - a)) > 0) {
printf("Case #%d: Yes\n", ++kase);
continue;
} else {
printf("Case #%d: No\n", ++kase);
continue;
}
} else {
// 找从圆外进入圆内的一个交点 p3
if(p1.dis2(a) < p2.dis2(a)) {
p3 = p1;
} else {
p3 = p2;
}
// 判断点b是否在线段ap3上
if(dcmp((b - a)^(c - a)) == 0 && dcmp((b - a)*(c - a)) > 0) {
if((p3 - a)*(p3 - b) < 0) {
printf("Case #%d: No\n", ++kase);
continue;
} else {
printf("Case #%d: Yes\n", ++kase);
continue;
}
}
// 反弹的情况
Line tmp = Line(o.p, p3);
Point p4 = tmp.symmetrypoint(a); // 反射后的一个点 点a关于圆心到交点p3所在直线的对称点
// 判断反射后能否到达点b
if(dcmp((b - p3)^(p4 - p3)) == 0 && dcmp((b - p3)*(p4 - p3)) > 0) {
printf("Case #%d: Yes\n", ++kase);
continue;
} else {
printf("Case #%d: No\n", ++kase);
continue;
}
}
}
return 0;
}

2015 ACM-ICPC 亚洲区上海站 A - An Easy Physics Problem (计算几何)的更多相关文章

  1. HDU 5572 An Easy Physics Problem (计算几何+对称点模板)

    HDU 5572 An Easy Physics Problem (计算几何) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5572 Descripti ...

  2. hdu 5444 Elven Postman(二叉树)——2015 ACM/ICPC Asia Regional Changchun Online

    Problem Description Elves are very peculiar creatures. As we all know, they can live for a very long ...

  3. 2016 ACM/ICPC亚洲区青岛站现场赛(部分题解)

    摘要 本文主要列举并求解了2016 ACM/ICPC亚洲区青岛站现场赛的部分真题,着重介绍了各个题目的解题思路,结合详细的AC代码,意在熟悉青岛赛区的出题策略,以备战2018青岛站现场赛. HDU 5 ...

  4. (并查集)Travel -- hdu -- 5441(2015 ACM/ICPC Asia Regional Changchun Online )

    http://acm.hdu.edu.cn/showproblem.php?pid=5441 Travel Time Limit: 1500/1000 MS (Java/Others)    Memo ...

  5. (二叉树)Elven Postman -- HDU -- 54444(2015 ACM/ICPC Asia Regional Changchun Online)

    http://acm.hdu.edu.cn/showproblem.php?pid=5444 Elven Postman Time Limit: 1500/1000 MS (Java/Others)  ...

  6. 2015 ACM/ICPC Asia Regional Changchun Online HDU 5444 Elven Postman【二叉排序树的建树和遍历查找】

    Elven Postman Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

  7. hdu 5572 An Easy Physics Problem 圆+直线

    An Easy Physics Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/ ...

  8. HDU 5572--An Easy Physics Problem(射线和圆的交点)

    An Easy Physics Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/ ...

  9. 2015 ACM / ICPC 亚洲区域赛总结(长春站&北京站)

    队名:Unlimited Code Works(无尽编码)  队员:Wu.Wang.Zhou 先说一下队伍:Wu是大三学长:Wang高中noip省一:我最渣,去年来大学开始学的a+b,参加今年区域赛之 ...

随机推荐

  1. delphi vlc 安装bug 处理编译错误"0" is an invalid value for the "DebugInformation" parameter of the "DCC"

    处理编译错误"0" is an invalid value for the "DebugInformation" parameter of the "DCC" [摘要:http://blog.csdn ...

  2. mysql null 值查询问题

    我在开发公司内部的一个项目时遇到一个问题:select student_quality_id from STUDENT_QUALITY where mark_status=0 and batch_st ...

  3. Python笔记(三)_字典与集合

    字典dict 映射类型,以键-值的方式存储,通过键来取相应的值 member={'one':1,'two':2,'three':3} 创建字典member=dict('苹果'='apple','桔子' ...

  4. c# Winform dev控件之ChartControl

    1.改变颜色 字体颜色 背景颜色 XYDiagram dia = chartControl1.Diagram as XYDiagram; dia.AxisX.Label.TextColor = Col ...

  5. xterm.js的深入学习

    demo <template> <div id="app" class="app-box">Hello</div> < ...

  6. elementUI table宽度自适应fit

    :fit='true' 或者直接为 fit

  7. SPI、IIC、IIS、UART、JTAG的应用场合级区别

    SPI  SPI接口的全称是"Serial Peripheral Interface",意为串行外围接口,是Motorola首先在其MC68HCXX系列处理器上定义的. SPI接口 ...

  8. 【转】Ubuntu下外放有声音 耳机没声音

    真是使用linux每天都有新的发现啊,今天早上起来用电脑,想听几首歌,插上耳机后发现没声音,我还以为是耳机坏了,就把耳机插在了手机上,发现耳机有声音,很纳闷,我象是不是电脑接口有问题了,但是在进系统的 ...

  9. Mybatis+Springmvc+Spring整合常用的配置文件

    1.创建web项目 2.导入mabatis spring springnvc 需要的jar包 3.创建mybatis,spring,springmvc的配置文件 (1)web.xml配置文件 < ...

  10. 使用 lombok 简化代码

    使用前的准备 1.Lombok 是一种 Java™ 实用工具,可用来帮助开发人员消除 Java 的冗长,尤其是对于简单的 Java 对象(POJO).它通过注解实现这一目的.  <1>添加 ...