2.1 模型表示

  我们通过一个例子来开始:这个例子是预测住房价格的,我们要使用一个数据集,数据集包含俄勒冈州波特兰市的住房价格。在这里,我要根据不同房屋尺寸所售出的价格,画出我的数据集。比方说,如果你朋友的房子是1250平方尺大小,你要告诉他们这房子能卖多少钱。那么,你可以做的一件事就是构建一个模型,也许是条直线,从这个数据模型上来看,也许你可以告诉你的朋友,他能以大约220000(美元)左右的价格卖掉这个房子。这就是监督学习算法的一个例子。

  它被称作监督学习是因为对于每个数据来说,我们给出了“正确的答案”,即告诉我们:根据我们的数据来说,房子实际的价格是多少,而且,更具体来说,这是一个回归问题。回归一词指的是,我们根据之前的数据预测出一个准确的输出值,对于这个例子就是价格,同时,还有另一种最常见的监督学习方式,叫做分类问题,当我们想要预测离散的输出值,例如,我们正在寻找癌症肿瘤,并想要确定肿瘤是良性的还是恶性的,这就是0/1离散输出的问题。更进一步来说,在监督学习中我们有一个数据集,这个数据集被称训练集。

我将在整个课程中用小写的m来表示训练样本的数目。

以之前的房屋交易问题为例,假使我们回归问题的训练集(Training Set)如下表所示:

我们将要用来描述这个回归问题的标记如下:

m 代表训练集中实例的数量

x 代表特征/输入变量

y 代表目标变量/输出变量

( x,y ) 代表训练集中的实例

(x^i,y^i) 代表第i个观察实例

h代表学习算法的解决方案或函数也称为假设(hypothesis)

过程:

  这就是一个监督学习算法的工作方式,我们可以看到这里有我们的训练集里房屋价格 喂给我们的学习算法,学习算法的工作了,然后输出一个函数,通常表示为小写 h表示。h代表hypothesis(假设),h表示一个函数,输入是房屋尺寸大小,就像你朋友想出售的房屋,因此 h根据输入的 x值来得出 y值,y值对应房子的价格 因此h 是一个从x 到 y的函数映射。

  我将选择最初的使用规则ℎ代表 hypothesis,因而,要解决房价预测问题,我们实际上是要将训练集“喂”给我们的学习算法,进而学习得到一个假设ℎ,然后将我们要预测的房屋的尺寸作为输入变量输入给ℎ,预测出该房屋的交易价格作为输出变量输出为结果。那么,对于我们的房价预测问题,我们该如何表达 ℎ?

一种可能的表达方式为:ℎ(x)=

2、单线性变量的回归(Linear Regression with One Variable)的更多相关文章

  1. 机器学习之单变量线性回归(Linear Regression with One Variable)

    1. 模型表达(Model Representation) 我们的第一个学习算法是线性回归算法,让我们通过一个例子来开始.这个例子用来预测住房价格,我们使用一个数据集,该数据集包含俄勒冈州波特兰市的住 ...

  2. ML:单变量线性回归(Linear Regression With One Variable)

    模型表达(model regression) 用于描述回归问题的标记 m 训练集(training set)中实例的数量 x 特征/输入变量 y 目标变量/输出变量 (x,y) 训练集中的实例 (x( ...

  3. Machine Learning 学习笔记2 - linear regression with one variable(单变量线性回归)

    一.Model representation(模型表示) 1.1 训练集 由训练样例(training example)组成的集合就是训练集(training set), 如下图所示, 其中(x,y) ...

  4. 斯坦福第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 I 2.4  代价函数的直观理解 I ...

  5. Ng第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 2.4  梯度下降 2.5  梯度下 ...

  6. 机器学习 (一) 单变量线性回归 Linear Regression with One Variable

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...

  7. [Machine Learning] 单变量线性回归(Linear Regression with One Variable) - 线性回归-代价函数-梯度下降法-学习率

    单变量线性回归(Linear Regression with One Variable) 什么是线性回归?线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方 ...

  8. 【cs229-Lecture2】Linear Regression with One Variable (Week 1)(含测试数据和源码)

    从Ⅱ到Ⅳ都在讲的是线性回归,其中第Ⅱ章讲得是简单线性回归(simple linear regression, SLR)(单变量),第Ⅲ章讲的是线代基础,第Ⅳ章讲的是多元回归(大于一个自变量). 本文的 ...

  9. Stanford机器学习---第一讲. Linear Regression with one variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7691571 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

随机推荐

  1. sqli(7)

    前言 第7关 导出文件GET字符型注入 步骤OK,但是就是不能写入文件,不知是文件夹的问题还是自己操作的问题.但是确实,没有导入成功. 1. 查看闭合,看源码,发现闭合是((‘ ’)): 2.查看所在 ...

  2. 机器学习-K-means聚类及算法实现(基于R语言)

    K-means聚类 将n个观测点,按一定标准(数据点的相似度),划归到k个聚类(用户划分.产品类别划分等)中. 重要概念:质心 K-means聚类要求的变量是数值变量,方便计算距离. 算法实现 R语言 ...

  3. k8s基本概念

    1)Master模块简介:     Master是Cluster的大脑,它的主要职责是调度,即决定将应用放在哪里运行.Master运行Linux操作系统,可以是物理机或者虚拟机.为了实现高可用,可以运 ...

  4. Ubuntu16.04 启用root权限

    装了Ubuntu 16.04之后想使用超级权限对系统进行操作 使用命令 su - 切换超级用户,提示输入密码,却怎么都不对,网上找的资料说是没有启用root权限,于是根据网上提供的方法启用root权限 ...

  5. flask之jinjia2模板

    一:渲染模板 app.run(debug=True)  开启debug模式,flask框架自动提示错误提示的页面显示. 视图函数 from flask import Flask from flask ...

  6. 01.helloworld--标签

    """参考网站:http://python.cocos2d.org/doc/programming_guide/index.html""" ...

  7. Selenium-ActionChainsApi介绍

    ActionChains 模拟鼠标悬浮到某一个位置,做一系列的连贯操作,使用Selenium提供的ActionChains模块 引入方式 from selenium.webdriver.common. ...

  8. 【Pytest】python单元测试框架pytest简介

    1.Pytest介绍 pytest是python的一种单元测试框架,与python自带的unittest测试框架类似,但是比unittest框架使用起来更简洁,效率更高.根据pytest的官方网站介绍 ...

  9. CSU 1547 Rectangle(dp、01背包)

    题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1547 Description Now ,there are some rectang ...

  10. Centos7配置定时重启服务器

    Crontab是一个很方便的在unix/linux系统上定时(循环)执行某个任务的程序. 用 service crond status 查看 crond服务状态,如果没有启动则 systemctl s ...