hiho #1308 : 搜索二·骑士问题
#1308 : 搜索二·骑士问题
描述
小Hi:小Ho你会下国际象棋么?
小Ho:应该算会吧,我知道每个棋子的移动方式,马走日象飞田什么的...
小Hi:象飞田那是中国象棋啦!
小Ho:哦,对。国际象棋好像是走斜线来着。
小Hi:不过马走日倒是对了。国际象棋中的马一般叫做骑士,关于它有个很有意思的问题。
小Ho:什么啊?
小Hi:骑士巡游问题,简单来说就是关于在棋盘上放置若干个骑士,然后探究移动这些骑士是否能满足一定的而要求。举个例子啊:一个骑士从起始点开始,能否经过棋盘上所有的格子再回到起点。
小Ho:哦,看上去好像很难的样子。
小Hi:其实也还好了。简单一点的比如棋盘上有3个骑士,能否通过若干次移动走到一起。
小Ho:能够么?
小Hi:当然能够了。由于骑士特殊的移动方式,放置在任何一个初始位置的骑士,都可以通过若干次移动到达棋盘上任意一个位置。
小Ho:那么只要选定一个位置,把它们全部移动过去就好了是吧?
小Hi:是的,那么这里又有另一个问题了:要选择哪一个位置汇合,使得3个骑士行动的总次数最少?
小Ho:嗯,这个好像不是很难,让我想一想。
输入
第1行:1个正整数t,表示数据组数,2≤t≤10。
第2..t+1行:用空格隔开的3个坐标, 每个坐标由2个字符AB组成,A为'A'~'H'的大写字母,B为'1'~'8'的数字,表示3个棋子的初始位置。
输出
第1..t行:每行1个数字,第i行表示第i组数据中3个棋子移动到同一格的最小行动步数。
- 样例输入
-
2
A1 A1 A1
B2 D3 F4 - 样例输出
-
0
2
思路:
利用队列做bfs,求出当前位置到棋盘上所有位置的最短距离,然后,三个棋子到棋盘位置的最短距离和
AC代码:
#include "iostream"
#include "string.h"
#include "queue" using namespace std; typedef pair<int, int> pii;
char ss[];
int vis[][][];
int d[][] = { { -, },{ -,- },{ -,- },{ -, },{ ,- },{ , },{ ,- },{ , } };
int step = ; pii pos; //马位置 bool in(pii p)
{
if (p.first < || p.second < || p.first> || p.second>)
return false;
else
return true;
} void bfs(int vi[][])
{
step = ;
queue<pii> q;
memset(vi, -, );
q.push(pos);
vi[pos.first][pos.second] = ; while (!q.empty())
{
pii pfront = q.front();
q.pop();
for (int i = ; i < ; i++)
{
pii temp;
temp.first = pfront.first + d[i][];
temp.second = pfront.second + d[i][];
if (in(temp) && vi[temp.first][temp.second] == -)
{
vi[temp.first][temp.second] = vi[pfront.first][pfront.second] + ;
q.push(temp);
}
}
}
} int main()
{
int t;
cin >> t;
while (t--)
{
scanf("%s", ss);
pos = make_pair(ss[] - 'A', ss[] - '');
bfs(vis[]); scanf("%s", ss);
pos = make_pair(ss[] - 'A', ss[] - '');
bfs(vis[]); scanf("%s", ss);
pos = make_pair(ss[] - 'A', ss[] - '');
bfs(vis[]); int ans = 1e9;
for (int i = ; i < ; i++)
{
for (int j = ; j < ; j++)
{
int temp = ;
for (int k = ; k < ; k++)
{
temp += vis[k][i][j];
}
if (temp < ans)
ans = temp;
}
}
cout << ans << endl;
}
}
补充:
提供另一种思路,因为是8x8的棋盘,可以模拟成8进制的一个数,这样3个旗子就是一个6位的8进制数。
由此可以通过一个大小为8^6的布尔数组来进行状态的判重。而每一次的状态转移也从原来的仅枚举8个方向,变成了枚举骑士加枚举方向,一共有3*8=24种可能。
此方法的伪代码为:
queue.push( initialStatus ) // 将初始的8进制数加入队列中
while (!queue.isEmpty())
now_status = queue.pop() // 弹出队列头元素
For i = 1 .. 3
// 枚举移动的其实
For j = 1 .. 8
// 枚举8种可能的移动
next_status = move(now_status, i, j) // 移动骑士并记录状态
If (next_status is valid AND not visited[ next_status ])
step[ next_status ] = step[ now_status ] + 1
queue.push( next_status )
If (check(next_status)) Then
// 检查这个八进制数是否满足3个坐标重合
Return step[ next_status ]
End If
End If
End For
End While
在进行检查是否已经走到一起时,可以通过一个位运算来做:
check(status):
Return ((status and 0x3f) == ((status rsh 6) and 0x3f)) and (((status rsh 6) and 0x3f) == ((status rsh 12) and 0x3f))
// rsh表示右移操作
小Ho:哦,这样就可以不用计算出每个骑士走到每个点的步数,而是在过程中就有可能直接求解到最先汇合位置的步数。
小Hi:对,不过这个算法中状态的转移会稍微复杂一点。你可以选择一个你比较喜欢的方法来实现。
小Ho:好!
hiho #1308 : 搜索二·骑士问题的更多相关文章
- 【hihocoder 1308】搜索二·骑士问题
[题目链接]:http://hihocoder.com/problemset/problem/1308 [题意] [题解] 用bfs处理出3个骑士到每个点的最短路; 然后枚举最后3个骑士到了哪一个点. ...
- hihoCoder 1308:搜索二·骑士问题(BFS预处理)
题目链接 题意 中文题意. 思路 对于每一个骑士,可以先预处理出到达地图上某个点的需要走的步数,然后最后暴力枚举地图上每一个点,让三个骑士走过的距离之和最小即可. #include <bits/ ...
- hihoCoder搜索二·骑士问题
#include <stdio.h> #include <string.h> #include <math.h> #include <algorithm> ...
- lintcode:搜索二维矩阵II
题目 搜索二维矩阵 II 写出一个高效的算法来搜索m×n矩阵中的值,返回这个值出现的次数. 这个矩阵具有以下特性: 每行中的整数从左到右是排序的. 每一列的整数从上到下是排序的. 在每一行或每一列中没 ...
- lintcode :搜索二维矩阵
题目: 搜索二维矩阵 写出一个高效的算法来搜索 m × n矩阵中的值. 这个矩阵具有以下特性: 每行中的整数从左到右是排序的. 每行的第一个数大于上一行的最后一个整数. 样例 考虑下列矩阵: [ [1 ...
- hiho欧拉路·二 --------- Fleury算法求欧拉路径
hiho欧拉路·二 分析: 小Ho:这种简单的谜题就交给我吧! 小Hi:真的没问题么? <10分钟过去> 小Ho:啊啊啊啊啊!搞不定啊!!!骨牌数量一多就乱了. 小Hi:哎,我就知道你会遇 ...
- 算法进阶面试题05——树形dp解决步骤、返回最大搜索二叉子树的大小、二叉树最远两节点的距离、晚会最大活跃度、手撕缓存结构LRU
接着第四课的内容,加入部分第五课的内容,主要介绍树形dp和LRU 第一题: 给定一棵二叉树的头节点head,请返回最大搜索二叉子树的大小 二叉树的套路 统一处理逻辑:假设以每个节点为头的这棵树,他的最 ...
- LintCode-38.搜索二维矩阵 II
搜索二维矩阵 II 写出一个高效的算法来搜索m×n矩阵中的值,返回这个值出现的次数. 这个矩阵具有以下特性: 每行中的整数从左到右是排序的. 每一列的整数从上到下是排序的. 在每一行或每一列中没有重复 ...
- LeetCode74.搜索二维矩阵
74.搜索二维矩阵 描述 编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值.该矩阵具有如下特性: 每行中的整数从左到右按升序排列. 每行的第一个整数大于前一行的最后一个整数. 示例 示 ...
随机推荐
- Django学习笔记(一)Django基础
新建项目 django-admin startproject my_site #会在当前目录新建my_site目录,可自行修改目录名 django-admin startproject my_site ...
- 一加手机刷入第三方Rec
首先阐述一下刷机的整体流程: 备份数据(可选):短信.联系人.通话记录.图片.应用数据的云端同步. 解锁 刷入第三方Recovery(简称Rec). 进入第三方Rec,刷第三方ROM. 刷机成功 解锁 ...
- Jira和confluence备份
参考: https://www.cnblogs.com/kevingrace/p/8862531.html JIRA备份和还原: #Jira默认会打开自动备份的功能,备份路径为: /data/atl ...
- Elasticsearch-布尔类型
boolean类型用于存储文档中的true/false.例如:专辑类型中需要添加一个字段表示是否可以下载,如下 curl -XPUT 'localhost:9200/music/album/4' -d ...
- ThreadPoolExecutor的重要参数
一.ThreadPoolExecutor的重要参数 1.corePoolSize:核心线程数 * 核心线程会一直存活,及时没有任务需要执行 * 当线程数小于核心线程数时 ...
- 客户端实现WebService服务接口
首先,要获得搭建好的WebService服务的WSDL,如要实现国内手机号码归属地查询WEB服务,其WSDL为:http://ws.webxml.com.cn/WebServices/MobileCo ...
- HTML5自学
1.1 标题文本 在HTML5中,文本的结构除了以行和段落出现之外,还可以作为标题存在,通常一篇文档最基本的结构就是由不同级别的标题和正文组成的. 例如1:(中国门户网站) https://www ...
- 福建工程学院第十四届ACM校赛B题题解
第二集,未来的我发量这么捉急的吗 题意: 有n个数,请问有多少对数字(i,j)(1<=i<j<=n),满足(a[i]^a[j])+((a[i]&a[j])<<1) ...
- Adam作者大革新, 联合Hinton等人推出全新优化方法Lookahead
Adam作者大革新, 联合Hinton等人推出全新优化方法Lookahead 参与:思源.路.泽南 快来试试 Lookahead 最优化方法啊,调参少.收敛好.速度还快,大牛用了都说好. 最优化方 ...
- Java集合框架中的元素
之前有一篇笔记,讲的是集合和泛型,这几天看Java集合中几个接口的文档,思绪非常混乱,直到看到Oracle的“The Collections Framwork”的页面,条理才清晰些,现在进行整理. 一 ...