【BZOJ3196】【Luogu P3380】 【模板】二逼平衡树(树套树)
做数据结构一定要平\((fo)\)心\((de)\)静\((yi)\)气\((pi)\)。。。不然会四处出锅的\(QAQ\)
写法:线段树套平衡树,\(O(Nlog^3N)\)。五个操作如果是对于整个区间的,那么就是平衡树板子题。现在既然是放在子区间上的,那么套一个线段树就好啦~
#include <bits/stdc++.h>
using namespace std;
const int N = 50000 + 5;
const int INF = 1e8 + 5;
#define ls (p << 1)
#define rs (p << 1 | 1)
#define mid ((l + r) >> 1)
int n, m, tot, arr[N];
struct FHQ_Node {
int w, lc, rc, sz, rd;
}t[N << 8];
struct FHQ_Treap {
int rt;
int NewNode (int w) {
t[++tot] = FHQ_Node {w, 0, 0, 1, rand ()};
return tot;
}
void push_up (int p) {
t[p].sz = 1;
if (t[p].lc) t[p].sz += t[t[p].lc].sz;
if (t[p].rc) t[p].sz += t[t[p].rc].sz;
}
void split (int now, int &A, int &B, int w) {
if (now == 0) {
A = B = 0; return;
}
if (t[now].w <= w) {
A = now; split (t[now].rc, t[A].rc, B, w);
} else {
B = now; split (t[now].lc, A, t[B].lc, w);
}
push_up (now);
}
int merge (int A, int B) {
if (A * B == 0) {
return A + B;
}
if (t[A].rd < t[B].rd) {
t[A].rc = merge (t[A].rc, B);
push_up (A); return A;
} else {
t[B].lc = merge (A, t[B].lc);
push_up (B); return B;
}
}
int x, y, z;
void Insert (int w) {
split (rt, x, y, w);
rt = merge (x, merge (NewNode (w), y));
// cout << "rt = " << rt << endl;
}
void Delete (int w) {
split (rt, x, y, w - 1);
split (y, y, z, w);
y = merge (t[y].lc, t[y].rc);
rt = merge (x, merge (y, z));
}
int pre (int w) {
split (rt, x, y, w - 1);
int p = x;
if (p == 0) {
return -0x7fffffff;
}
while (t[p].rc != 0) {
p = t[p].rc;
}
rt = merge (x, y);
return t[p].w;
}
int nxt (int w) {
split (rt, x, y, w);
int p = y;
if (p == 0) {
return +0x7fffffff;
}
while (t[p].lc != 0) {
p = t[p].lc;
}
rt = merge (x, y);
return t[p].w;
}
void print (int p) {
if (t[p].lc) print (t[p].lc);
// cout << "p = " << p << " w = " << t[p].w << " sz = " << t[p].sz << endl;
if (t[p].rc) print (t[p].rc);
}
int rank (int w) {
split (rt, x, y, w - 1);
int ret = t[x].sz + 1;
rt = merge (x, y);
// print (rt); cout << endl;
return ret;
}
};
struct Segment_Tree {
FHQ_Treap tree[N << 2];
void modify (int pos, int wpre, int wnew, int l = 1, int r = n, int p = 1) {
// cout << "p = " << p << endl;
if (wpre != -1) {tree[p].Delete (wpre);/*cout << "tree[" << p << "].Delete (" << wpre << ");" << endl;*/}
if (wnew != -1) {tree[p].Insert (wnew);/*cout << "tree[" << p << "].Insert (" << wnew << ");" << endl;*/}
if (l == r) return;
if (pos <= mid) {
modify (pos, wpre, wnew, l, mid + 0, ls);
} else {
modify (pos, wpre, wnew, mid + 1, r, rs);
}
}
int tot, sta[N];
void get_segment (int nl, int nr, int l = 1, int r = n, int p = 1) {
if (p == 1) tot = 0;
if (nl <= l && r <= nr) {
sta[++tot] = p; return;
}
if (nl <= mid) get_segment (nl, nr, l, mid + 0, ls);
if (mid < nr) get_segment (nl, nr, mid + 1, r, rs);
}
int rank (int l, int r, int w) {
get_segment (l, r);
int ret = 1;
for (int i = 1; i <= tot; ++i) {
// cout << tree[sta[i]].rank (w) << endl;
ret += (tree[sta[i]].rank (w) - 1);
}
// cout << "val = " << w << " rank = " << ret << endl;
return ret;
}
int kth (int l, int r, int k) {
int lval = 0, rval = INF;
// cout << "k = " << k << endl;
while (lval < rval) {
// getchar ();
int _mid = (lval + rval + 1) >> 1;
// cout << "lval = " << lval << " rval = " << rval << " mid = " << _mid << " rank " << k << " = " << rank (l, r, _mid) << endl;
if (rank (l, r, _mid) <= k) {
lval = _mid;
} else {
rval = _mid - 1;
}
}
return lval;
}
int pre (int l, int r, int w) {
get_segment (l, r);
int maxw = -0x7fffffff;
for (int i = 1; i <= tot; ++i) {
maxw = max (maxw, tree[sta[i]].pre (w));
}
return maxw;
}
int nxt (int l, int r, int w) {
get_segment (l, r);
int minw = +0x7fffffff;
for (int i = 1; i <= tot; ++i) {
minw = min (minw, tree[sta[i]].nxt (w));
}
return minw;
}
}tr;
int read () {
int s = 0, ch = getchar ();
while (!isdigit (ch)) {
ch = getchar ();
}
while (isdigit (ch)) {
s = s * 10 + ch - '0';
ch = getchar ();
}
return s;
}
int main () {
// freopen ("data.in", "r", stdin);
srand (time (NULL));
n = read (), m = read ();
for (int i = 1; i <= n; ++i) {
int w = read ();
tr.modify (i, -1, w);
arr[i] = w;
// cout << endl;
}
int opt, pos, l, r, k;
for (int i = 1; i <= m; ++i) {
opt = read ();
if (opt == 1) {
l = read (), r = read (), k = read ();
cout << tr.rank (l, r, k) << endl;
}
if (opt == 2) {
l = read (), r = read (), k = read ();
cout << tr.kth (l, r, k) << endl;
}
if (opt == 3) {
pos = read (), k = read ();
tr.modify (pos, arr[pos], k);
arr[pos] = k;
}
if (opt == 4) {
l = read (), r = read (), k = read ();
cout << tr.pre (l, r, k) << endl;
}
if (opt == 5) {
l = read (), r = read (), k = read ();
cout << tr.nxt (l, r, k) << endl;
}
}
}
【BZOJ3196】【Luogu P3380】 【模板】二逼平衡树(树套树)的更多相关文章
- 【bzoj3196】Tyvj 1730 二逼平衡树 线段树套Treap
题目描述 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:1.查询k在区间内的排名2.查询区间内排名为k的值3.修改某一位值上的数值4.查询k在区间内的前驱(前驱定义 ...
- bzoj 3196 Tyvj 1730 二逼平衡树(线段树套名次树)
3196: Tyvj 1730 二逼平衡树 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1807 Solved: 772[Submit][Stat ...
- bzoj 3196/ Tyvj 1730 二逼平衡树 (线段树套平衡树)
3196: Tyvj 1730 二逼平衡树 Time Limit: 10 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description ...
- 【BZOJ3196】Tyvj 1730 二逼平衡树
Description 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:1.查询k在区间内的排名2.查询区间内排名为k的值3.修改某一位值上的数值4.查询k在区间内的 ...
- BZOJ3196 二逼平衡树 ZKW线段树套vector(滑稽)
我实在是不想再打一遍树状数组套替罪羊树了... 然后在普通平衡树瞎逛的时候找到了以前看过vector题解 于是我想:为啥不把平衡树换成vector呢??? 然后我又去学了一下ZKW线段树 就用ZKW线 ...
- BZOJ3196 二逼平衡树 【线段树套平衡树】
题目 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排名 2.查询区间内排名为k的值 3.修改某一位值上的数值 4.查询k在区间内的前驱(前驱 ...
- BZOJ 3196 Tyvj 1730 二逼平衡树:线段树套splay
传送门 题意 给你一个长度为 $ n $ 有序数列 $ a $ ,进行 $ m $ 次操作,操作有如下几种: 查询 $ k $ 在区间 $ [l,r] $ 内的排名 查询区间 $ [l,r] $ 内排 ...
- [BZOJ3196] [Tyvj1730] 二逼平衡树(线段树 套 Splay)
传送门 至少BZOJ过了,其他的直接弃. 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排名 2.查询区间内排名为k的值 3.修改某一位值上的 ...
- bzoj 3196 Tyvj 1730 二逼平衡树【线段树 套 splay】
四舍五入就是个暴力. 对于线段树的每个区间都开一棵按权值排序的splay 对于第二个操作,二分一下,每次查询mid的排名,复杂度 $ O(nlog(n)^{3}) $ 其余的操作都是$ O(nlog( ...
- 洛谷 P3380 bzoj3196 Tyvj1730 【模板】二逼平衡树(树套树)
[模板]二逼平衡树(树套树) 题目描述 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 查询k在区间内的排名 查询区间内排名为k的值 修改某一位值上的数值 查询k在 ...
随机推荐
- Django-ORM外键属性总结
ForeignKey ForeignKey(ForeignObject) # ForeignObject(RelatedField) to, # 要进行关联的表名 to_field=None, # 要 ...
- Samba简单应用
一.Samba 简介 1.介绍 Samba(SMB是其缩写) 是一个网络服务器,用于Linux和Windows共享文件之用:Samba 即可以用于Windows和Linux之间的共享文件,也一样用于L ...
- vscode配置PHP Debug
1.先在vscode中安装PHP Debug,在设置添加“php.validate.executablePath”项,选中对应版本的php.exe. "php.validate.execut ...
- 学python的第三天
函数的作用 不知道大家是否注意到,在上面的代码中,我们做了3次求阶乘,这样的代码实际上就是重复代码.编程大师Martin Fowler先生曾经说过:“代码有很多种坏味道,重复是最坏的一种!”,要写出高 ...
- Elasticsearch Metric聚合
首先查看index文档信息 $ curl -XGET "http://172.16.101.55:9200/_cat/indices?v" 输出 health status ind ...
- 小记--------spark内核架构原理分析
首先会将jar包上传到机器(服务器上) 1.在这台机器上会产生一个Application(也就是自己的spark程序) 2.然后通过spark-submit(shell) 提交程序 ...
- Kick Start 2019 Round A Parcels
题目大意 $R \times C$ 的网格,格子间的距离取曼哈顿距离.有些格子是邮局.现在可以把至多一个不是邮局的格子变成邮局,问每个格子到最近的邮局的曼哈顿距离的最大值最小是多少. 数据范围 $ 1 ...
- UML表示类图和对象图
类图表示不同的实体(人.事物和数据)如何彼此相关,显示了系统的静态结构.类图可用于表示逻辑类,逻辑类通常就是业务人员所谈及的事物种类,比如摇滚乐队.CD.广播剧,或者贷款.住房抵押.汽车信贷及利率的抽 ...
- CentOS7通过YUM安装NGINX稳定版本
创建 nginx.repo 文件 $ cd /etc/repos.d/ $ vim nginx.repo #写入以下内容 [nginx-stable] name=nginx stable repo b ...
- multivariate_normal 多元正态分布
多元正态分布 正态分布大家都非常熟悉了,多元正态分布就是多维数据的正态分布,其概率密度函数为 上式为 x 服从 k 元正态分布,x 为 k 维向量:|Σ| 代表协方差矩阵的行列式 二维正态分布概率密度 ...