吴恩达+neural-networks-deep-learning+第二周作业
Logistic Regression with a Neural Network mindset v4
简单用logistic实现了猫的识别,logistic可以被看做一个简单的神经网络结构,下面是主要代码:
1.
import numpy as np
import matplotlib.pyplot as plt
import h5py
import scipy
from PIL import Image
from scipy import ndimage
from lr_utils import load_dataset %matplotlib inline
2.
### START CODE HERE ### (≈ 3 lines of code)
m_train = train_set_x_orig.shape[0]
m_test = test_set_x_orig.shape[0]
num_px = train_set_x_orig.shape[1]
### END CODE HERE ### print ("Number of training examples: m_train = " + str(m_train))
print ("Number of testing examples: m_test = " + str(m_test))
print ("Height/Width of each image: num_px = " + str(num_px))
print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)")
print ("train_set_x shape: " + str(train_set_x_orig.shape))
print ("train_set_y shape: " + str(train_set_y.shape))
print ("test_set_x shape: " + str(test_set_x_orig.shape))
print ("test_set_y shape: " + str(test_set_y.shape))
3.数据预处理过程
# Reshape the training and test examples ### START CODE HERE ### (≈ 2 lines of code)
train_set_x_flatten = train_set_x_orig.reshape(-1,train_set_x_orig.shape[1]*train_set_x_orig.shape[2]*3).T
test_set_x_flatten = test_set_x_orig.reshape(-1,test_set_x_orig.shape[1]*test_set_x_orig.shape[2]*3).T
### END CODE HERE ### print ("train_set_x_flatten shape: " + str(train_set_x_flatten.shape))
print ("train_set_y shape: " + str(train_set_y.shape))
print ("test_set_x_flatten shape: " + str(test_set_x_flatten.shape))
print ("test_set_y shape: " + str(test_set_y.shape))
print ("sanity check after reshaping: " + str(train_set_x_flatten[0:5,0]))
4.
train_set_x = train_set_x_flatten/255.
test_set_x = test_set_x_flatten/255.
5.
def propagate(w, b, X, Y):
"""
Implement the cost function and its gradient for the propagation explained above Arguments:
w -- weights, a numpy array of size (num_px * num_px * 3, 1)
b -- bias, a scalar
X -- data of size (num_px * num_px * 3, number of examples)
Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples) Return:
cost -- negative log-likelihood cost for logistic regression
dw -- gradient of the loss with respect to w, thus same shape as w
db -- gradient of the loss with respect to b, thus same shape as b Tips:
- Write your code step by step for the propagation. np.log(), np.dot()
""" m = X.shape[1] # FORWARD PROPAGATION (FROM X TO COST)
### START CODE HERE ### (≈ 2 lines of code)
A = sigmoid(np.dot(w.T,X)+b) # compute activation
cost = -1/m*((np.dot(Y,np.log(A).T))+(np.dot(1-Y,np.log(1-A).T))) # compute cost
### END CODE HERE ### # BACKWARD PROPAGATION (TO FIND GRAD)
### START CODE HERE ### (≈ 2 lines of code)
dw = 1/m*np.dot(X,(A-Y).T)
db = 1/m*np.sum(A-Y)
### END CODE HERE ### assert(dw.shape == w.shape)
assert(db.dtype == float)
cost = np.squeeze(cost)
assert(cost.shape == ()) grads = {"dw": dw,
"db": db} return grads, cost
6.
# GRADED FUNCTION: optimize def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False):
"""
This function optimizes w and b by running a gradient descent algorithm Arguments:
w -- weights, a numpy array of size (num_px * num_px * 3, 1)
b -- bias, a scalar
X -- data of shape (num_px * num_px * 3, number of examples)
Y -- true "label" vector (containing 0 if non-cat, 1 if cat), of shape (1, number of examples)
num_iterations -- number of iterations of the optimization loop
learning_rate -- learning rate of the gradient descent update rule
print_cost -- True to print the loss every 100 steps Returns:
params -- dictionary containing the weights w and bias b
grads -- dictionary containing the gradients of the weights and bias with respect to the cost function
costs -- list of all the costs computed during the optimization, this will be used to plot the learning curve. Tips:
You basically need to write down two steps and iterate through them:
1) Calculate the cost and the gradient for the current parameters. Use propagate().
2) Update the parameters using gradient descent rule for w and b.
""" costs = [] for i in range(num_iterations): # Cost and gradient calculation (≈ 1-4 lines of code)
### START CODE HERE ###
grads, cost = propagate(w,b,X,Y)
### END CODE HERE ### # Retrieve derivatives from grads
dw = grads["dw"]
db = grads["db"] # update rule (≈ 2 lines of code)
### START CODE HERE ###
w = w-learning_rate*dw
b = b-learning_rate*db
### END CODE HERE ### # Record the costs
if i % 100 == 0:
costs.append(cost) # Print the cost every 100 training examples
if print_cost and i % 100 == 0:
print ("Cost after iteration %i: %f" %(i, cost)) params = {"w": w,
"b": b} grads = {"dw": dw,
"db": db} return params, grads, costs
7.
# GRADED FUNCTION: predict def predict(w, b, X):
'''
Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b) Arguments:
w -- weights, a numpy array of size (num_px * num_px * 3, 1)
b -- bias, a scalar
X -- data of size (num_px * num_px * 3, number of examples) Returns:
Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X
''' m = X.shape[1]
Y_prediction = np.zeros((1,m))
w = w.reshape(X.shape[0], 1) # Compute vector "A" predicting the probabilities of a cat being present in the picture
### START CODE HERE ### (≈ 1 line of code)
A = sigmoid(np.dot(w.T,X)+b)
### END CODE HERE ### #########
Y_prediction=A>0.5
Y_prediction=Y_prediction.astype(float)
######### for i in range(A.shape[1]): # Convert probabilities A[0,i] to actual predictions p[0,i]
### START CODE HERE ### (≈ 4 lines of code)
pass
### END CODE HERE ### assert(Y_prediction.shape == (1, m)) return Y_prediction
用了一个向量化解决了循环问题,很开心!
8.
# GRADED FUNCTION: model def model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost = False):
"""
Builds the logistic regression model by calling the function you've implemented previously Arguments:
X_train -- training set represented by a numpy array of shape (num_px * num_px * 3, m_train)
Y_train -- training labels represented by a numpy array (vector) of shape (1, m_train)
X_test -- test set represented by a numpy array of shape (num_px * num_px * 3, m_test)
Y_test -- test labels represented by a numpy array (vector) of shape (1, m_test)
num_iterations -- hyperparameter representing the number of iterations to optimize the parameters
learning_rate -- hyperparameter representing the learning rate used in the update rule of optimize()
print_cost -- Set to true to print the cost every 100 iterations Returns:
d -- dictionary containing information about the model.
""" ### START CODE HERE ### # initialize parameters with zeros (≈ 1 line of code)
w, b = initialize_with_zeros(X_train.shape[0]) # Gradient descent (≈ 1 line of code)
parameters, grads, costs = optimize(w, b , X_train , Y_train , num_iterations , learning_rate , print_cost = False) # Retrieve parameters w and b from dictionary "parameters"
w = parameters["w"]
b = parameters["b"] # Predict test/train set examples (≈ 2 lines of code)
Y_prediction_test = predict(w,b,X_test)
Y_prediction_train = predict(w,b,X_train) ### END CODE HERE ### # Print train/test Errors
print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100)) d = {"costs": costs,
"Y_prediction_test": Y_prediction_test,
"Y_prediction_train" : Y_prediction_train,
"w" : w,
"b" : b,
"learning_rate" : learning_rate,
"num_iterations": num_iterations}
print(d["costs"])
return d
如果3的代码写反了,就变成34%的预测结果了,所以千万要注意细节!
吴恩达+neural-networks-deep-learning+第二周作业的更多相关文章
- cousera 吴恩达 深度学习 第一课 第二周 作业 过拟合的表现
上图是课上的编程作业运行10000次迭代后,输出每一百次迭代 训练准确度和测试准确度的走势图,可以看到在600代左右测试准确度为最大的,74%左右, 然后掉到70%左右,再掉到68%左右,然后升到70 ...
- (Deep) Neural Networks (Deep Learning) , NLP and Text Mining
(Deep) Neural Networks (Deep Learning) , NLP and Text Mining 最近翻了一下关于Deep Learning 或者 普通的Neural Netw ...
- Github | 吴恩达新书《Machine Learning Yearning》完整中文版开源
最近开源了周志华老师的西瓜书<机器学习>纯手推笔记: 博士笔记 | 周志华<机器学习>手推笔记第一章思维导图 [博士笔记 | 周志华<机器学习>手推笔记第二章&qu ...
- 吴恩达《深度学习》-第一门课 (Neural Networks and Deep Learning)-第二周:(Basics of Neural Network programming)-课程笔记
第二周:神经网络的编程基础 (Basics of Neural Network programming) 2.1.二分类(Binary Classification) 二分类问题的目标就是习得一个分类 ...
- 吴恩达《深度学习》-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-第一周:深度学习的实践层面 (Practical aspects of Deep Learning) -课程笔记
第一周:深度学习的实践层面 (Practical aspects of Deep Learning) 1.1 训练,验证,测试集(Train / Dev / Test sets) 创建新应用的过程中, ...
- 吴恩达 Deep learning 第二周 神经网络基础
逻辑回归代价函数(损失函数)的几个求导特性 1.对于sigmoid函数 2.对于以下函数 3.线性回归与逻辑回归的神经网络图表示 利用Numpy向量化运算与for循环运算的显著差距 import nu ...
- 吴恩达《深度学习》第二门课(3)超参数调试、Batch正则化和程序框架
3.1调试处理 (1)不同超参数调试的优先级是不一样的,如下图中的一些超参数,首先最重要的应该是学习率α(红色圈出),然后是Momentum算法的β.隐藏层单元数.mini-batch size(黄色 ...
- 笔记 | 吴恩达新书《Machine Learning Yearning》
这本书共112页,内容不多,偏向于工程向,有很多不错的细节,在此记录一下. 0 书籍获取 关注微信公众号"机器学习炼丹术",回复[MLY]获取pdf 1 测试集与训练集的比例 2 ...
- 吴恩达(Andrew Ng)——机器学习笔记1
之前经学长推荐,开始在B站上看Andrew Ng的机器学习课程.其实已经看了1/3了吧,今天把学习笔记补上吧. 吴恩达老师的Machine learning课程共有113节(B站上的版本https:/ ...
- 吴恩达《深度学习》-课后测验-第一门课 (Neural Networks and Deep Learning)-Week 2 - Neural Network Basics(第二周测验 - 神经网络基础)
Week 2 Quiz - Neural Network Basics(第二周测验 - 神经网络基础) 1. What does a neuron compute?(神经元节点计算什么?) [ ] A ...
随机推荐
- Andrew算法求二维凸包-学习笔记
凸包的概念 首先,引入凸包的概念: (有点窄的时候...图片右边可能会被吞,拉开图片看就可以了) 大概长这个样子: 那么,给定一些散点,如何快速地求出凸包呢(用在凸包上的点来表示凸包) Andrew算 ...
- 【Linux开发】【DSP开发】Linux设备驱动之——PCI 总线
PCI总线概述 随着通用处理器和嵌入式技术的迅猛发展,越来越多的电子设备需要由处理器控制.目前大多数CPU和外部设备都会提供PCI总线的接口,PCI总线已成为计算机系统中一种应用广泛.通用的总线标准 ...
- npm install 报 128 错误
[问题描述] 项目执行npm install的时候特别慢,到最后直接返回错误: verbose exit [ 1, true ] [解决方法] 执行以下两条命令: git config --globa ...
- Quartz持久化到mongodb
springboot中集成quzrtz ,持久到mongodb 1.pom引用 <?xml version="1.0" encoding="UTF-8"? ...
- [转帖]yum命令的使用与createrepo自建仓库教程
yum命令的使用与createrepo自建仓库教程 http://www.linuxe.cn/post-300.html 跟上篇一样 可以学习一下. 发布:TangLu2018-11-23 16:48 ...
- [转帖]天津飞腾回应处理器造假 没有采用ARM的内核,内核自主设计
天津飞腾回应处理器造假没有采用ARM的内核,内核自主设计 ... https://www.expreview.com/63233.html 看了下 同意孟宪瑞老师的关系 飞腾 的确改动了 ARM的架构 ...
- JavaSE 基础
一.Java 面向对象 1. 面向对象都有哪些特性以及 你对这些特性的理解 1.1. 继承: 继承是从已有类得到继承信息创建新类的过程. 提供继承信息的类被称为父类(超类,基类);得到继承信息的类被称 ...
- 初次shell编程
虽然说的是初次shell写xhell脚本,但是其实我也写了三.四个简单的脚本了.现在总结下写简单的shell脚本中遇到的一些小问题备忘一下吧. 首先是脚本文件是已.sh作为后缀的,可以先建一个.sh的 ...
- spark教程(13)-shuffle介绍
shuffle 简介 shuffle 描述了数据从 map task 输出到 reduce task 输入的过程,shuffle 是连接 map 和 reduce 的桥梁: shuffle 性能的高低 ...
- Python和其他编程语言
Python和其他编程语言 一.Python介绍 Python的创始人为吉多·范罗苏姆(Guido van Rossum),如下图,少数几个不秃头的语言创始人.1989年的圣诞节期间,Guido为了打 ...