Logistic Regression with a Neural Network mindset v4

简单用logistic实现了猫的识别,logistic可以被看做一个简单的神经网络结构,下面是主要代码:

1.

import numpy as np
import matplotlib.pyplot as plt
import h5py
import scipy
from PIL import Image
from scipy import ndimage
from lr_utils import load_dataset %matplotlib inline

2.

### START CODE HERE ### (≈ 3 lines of code)
m_train = train_set_x_orig.shape[0]
m_test = test_set_x_orig.shape[0]
num_px = train_set_x_orig.shape[1]
### END CODE HERE ### print ("Number of training examples: m_train = " + str(m_train))
print ("Number of testing examples: m_test = " + str(m_test))
print ("Height/Width of each image: num_px = " + str(num_px))
print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)")
print ("train_set_x shape: " + str(train_set_x_orig.shape))
print ("train_set_y shape: " + str(train_set_y.shape))
print ("test_set_x shape: " + str(test_set_x_orig.shape))
print ("test_set_y shape: " + str(test_set_y.shape))

3.数据预处理过程

# Reshape the training and test examples

### START CODE HERE ### (≈ 2 lines of code)
train_set_x_flatten = train_set_x_orig.reshape(-1,train_set_x_orig.shape[1]*train_set_x_orig.shape[2]*3).T
test_set_x_flatten = test_set_x_orig.reshape(-1,test_set_x_orig.shape[1]*test_set_x_orig.shape[2]*3).T
### END CODE HERE ### print ("train_set_x_flatten shape: " + str(train_set_x_flatten.shape))
print ("train_set_y shape: " + str(train_set_y.shape))
print ("test_set_x_flatten shape: " + str(test_set_x_flatten.shape))
print ("test_set_y shape: " + str(test_set_y.shape))
print ("sanity check after reshaping: " + str(train_set_x_flatten[0:5,0]))
注意:此处,不可用(num_px*num_px*3 ,-1),因为reshape默认 以行分割,就是说我在确定一个reshape之后(M,N)现在我读取原数组按行读取,写入数组的时候也是按行写入的,所以我原数组的行是一幅图像,那么reshape数组的行也应该是一个图像,所以要写成,train_set_x_orig.reshape(-1,train_set_x_orig.shape[1]*train_set_x_orig.shape[2]*3),而不是把样本数量当做行,那就乱了!
 

4.

train_set_x = train_set_x_flatten/255.
test_set_x = test_set_x_flatten/255.

5.

def propagate(w, b, X, Y):
"""
Implement the cost function and its gradient for the propagation explained above Arguments:
w -- weights, a numpy array of size (num_px * num_px * 3, 1)
b -- bias, a scalar
X -- data of size (num_px * num_px * 3, number of examples)
Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples) Return:
cost -- negative log-likelihood cost for logistic regression
dw -- gradient of the loss with respect to w, thus same shape as w
db -- gradient of the loss with respect to b, thus same shape as b Tips:
- Write your code step by step for the propagation. np.log(), np.dot()
""" m = X.shape[1] # FORWARD PROPAGATION (FROM X TO COST)
### START CODE HERE ### (≈ 2 lines of code)
A = sigmoid(np.dot(w.T,X)+b) # compute activation
cost = -1/m*((np.dot(Y,np.log(A).T))+(np.dot(1-Y,np.log(1-A).T))) # compute cost
### END CODE HERE ### # BACKWARD PROPAGATION (TO FIND GRAD)
### START CODE HERE ### (≈ 2 lines of code)
dw = 1/m*np.dot(X,(A-Y).T)
db = 1/m*np.sum(A-Y)
### END CODE HERE ### assert(dw.shape == w.shape)
assert(db.dtype == float)
cost = np.squeeze(cost)
assert(cost.shape == ()) grads = {"dw": dw,
"db": db} return grads, cost

  

6.

# GRADED FUNCTION: optimize

def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False):
"""
This function optimizes w and b by running a gradient descent algorithm Arguments:
w -- weights, a numpy array of size (num_px * num_px * 3, 1)
b -- bias, a scalar
X -- data of shape (num_px * num_px * 3, number of examples)
Y -- true "label" vector (containing 0 if non-cat, 1 if cat), of shape (1, number of examples)
num_iterations -- number of iterations of the optimization loop
learning_rate -- learning rate of the gradient descent update rule
print_cost -- True to print the loss every 100 steps Returns:
params -- dictionary containing the weights w and bias b
grads -- dictionary containing the gradients of the weights and bias with respect to the cost function
costs -- list of all the costs computed during the optimization, this will be used to plot the learning curve. Tips:
You basically need to write down two steps and iterate through them:
1) Calculate the cost and the gradient for the current parameters. Use propagate().
2) Update the parameters using gradient descent rule for w and b.
""" costs = [] for i in range(num_iterations): # Cost and gradient calculation (≈ 1-4 lines of code)
### START CODE HERE ###
grads, cost = propagate(w,b,X,Y)
### END CODE HERE ### # Retrieve derivatives from grads
dw = grads["dw"]
db = grads["db"] # update rule (≈ 2 lines of code)
### START CODE HERE ###
w = w-learning_rate*dw
b = b-learning_rate*db
### END CODE HERE ### # Record the costs
if i % 100 == 0:
costs.append(cost) # Print the cost every 100 training examples
if print_cost and i % 100 == 0:
print ("Cost after iteration %i: %f" %(i, cost)) params = {"w": w,
"b": b} grads = {"dw": dw,
"db": db} return params, grads, costs

  

7.

# GRADED FUNCTION: predict

def predict(w, b, X):
'''
Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b) Arguments:
w -- weights, a numpy array of size (num_px * num_px * 3, 1)
b -- bias, a scalar
X -- data of size (num_px * num_px * 3, number of examples) Returns:
Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X
''' m = X.shape[1]
Y_prediction = np.zeros((1,m))
w = w.reshape(X.shape[0], 1) # Compute vector "A" predicting the probabilities of a cat being present in the picture
### START CODE HERE ### (≈ 1 line of code)
A = sigmoid(np.dot(w.T,X)+b)
### END CODE HERE ### #########
Y_prediction=A>0.5
Y_prediction=Y_prediction.astype(float)
######### for i in range(A.shape[1]): # Convert probabilities A[0,i] to actual predictions p[0,i]
### START CODE HERE ### (≈ 4 lines of code)
pass
### END CODE HERE ### assert(Y_prediction.shape == (1, m)) return Y_prediction

用了一个向量化解决了循环问题,很开心!

8.

# GRADED FUNCTION: model

def model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost = False):
"""
Builds the logistic regression model by calling the function you've implemented previously Arguments:
X_train -- training set represented by a numpy array of shape (num_px * num_px * 3, m_train)
Y_train -- training labels represented by a numpy array (vector) of shape (1, m_train)
X_test -- test set represented by a numpy array of shape (num_px * num_px * 3, m_test)
Y_test -- test labels represented by a numpy array (vector) of shape (1, m_test)
num_iterations -- hyperparameter representing the number of iterations to optimize the parameters
learning_rate -- hyperparameter representing the learning rate used in the update rule of optimize()
print_cost -- Set to true to print the cost every 100 iterations Returns:
d -- dictionary containing information about the model.
""" ### START CODE HERE ### # initialize parameters with zeros (≈ 1 line of code)
w, b = initialize_with_zeros(X_train.shape[0]) # Gradient descent (≈ 1 line of code)
parameters, grads, costs = optimize(w, b , X_train , Y_train , num_iterations , learning_rate , print_cost = False) # Retrieve parameters w and b from dictionary "parameters"
w = parameters["w"]
b = parameters["b"] # Predict test/train set examples (≈ 2 lines of code)
Y_prediction_test = predict(w,b,X_test)
Y_prediction_train = predict(w,b,X_train) ### END CODE HERE ### # Print train/test Errors
print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100)) d = {"costs": costs,
"Y_prediction_test": Y_prediction_test,
"Y_prediction_train" : Y_prediction_train,
"w" : w,
"b" : b,
"learning_rate" : learning_rate,
"num_iterations": num_iterations}
print(d["costs"])
return d

如果3的代码写反了,就变成34%的预测结果了,所以千万要注意细节!

吴恩达+neural-networks-deep-learning+第二周作业的更多相关文章

  1. cousera 吴恩达 深度学习 第一课 第二周 作业 过拟合的表现

    上图是课上的编程作业运行10000次迭代后,输出每一百次迭代 训练准确度和测试准确度的走势图,可以看到在600代左右测试准确度为最大的,74%左右, 然后掉到70%左右,再掉到68%左右,然后升到70 ...

  2. (Deep) Neural Networks (Deep Learning) , NLP and Text Mining

    (Deep) Neural Networks (Deep Learning) , NLP and Text Mining 最近翻了一下关于Deep Learning 或者 普通的Neural Netw ...

  3. Github | 吴恩达新书《Machine Learning Yearning》完整中文版开源

    最近开源了周志华老师的西瓜书<机器学习>纯手推笔记: 博士笔记 | 周志华<机器学习>手推笔记第一章思维导图 [博士笔记 | 周志华<机器学习>手推笔记第二章&qu ...

  4. 吴恩达《深度学习》-第一门课 (Neural Networks and Deep Learning)-第二周:(Basics of Neural Network programming)-课程笔记

    第二周:神经网络的编程基础 (Basics of Neural Network programming) 2.1.二分类(Binary Classification) 二分类问题的目标就是习得一个分类 ...

  5. 吴恩达《深度学习》-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-第一周:深度学习的实践层面 (Practical aspects of Deep Learning) -课程笔记

    第一周:深度学习的实践层面 (Practical aspects of Deep Learning) 1.1 训练,验证,测试集(Train / Dev / Test sets) 创建新应用的过程中, ...

  6. 吴恩达 Deep learning 第二周 神经网络基础

    逻辑回归代价函数(损失函数)的几个求导特性 1.对于sigmoid函数 2.对于以下函数 3.线性回归与逻辑回归的神经网络图表示 利用Numpy向量化运算与for循环运算的显著差距 import nu ...

  7. 吴恩达《深度学习》第二门课(3)超参数调试、Batch正则化和程序框架

    3.1调试处理 (1)不同超参数调试的优先级是不一样的,如下图中的一些超参数,首先最重要的应该是学习率α(红色圈出),然后是Momentum算法的β.隐藏层单元数.mini-batch size(黄色 ...

  8. 笔记 | 吴恩达新书《Machine Learning Yearning》

    这本书共112页,内容不多,偏向于工程向,有很多不错的细节,在此记录一下. 0 书籍获取 关注微信公众号"机器学习炼丹术",回复[MLY]获取pdf 1 测试集与训练集的比例 2 ...

  9. 吴恩达(Andrew Ng)——机器学习笔记1

    之前经学长推荐,开始在B站上看Andrew Ng的机器学习课程.其实已经看了1/3了吧,今天把学习笔记补上吧. 吴恩达老师的Machine learning课程共有113节(B站上的版本https:/ ...

  10. 吴恩达《深度学习》-课后测验-第一门课 (Neural Networks and Deep Learning)-Week 2 - Neural Network Basics(第二周测验 - 神经网络基础)

    Week 2 Quiz - Neural Network Basics(第二周测验 - 神经网络基础) 1. What does a neuron compute?(神经元节点计算什么?) [ ] A ...

随机推荐

  1. word2010 标题自动编号设置

    今天打算写篇文档,发现生成标题时无法自动生成编号,上网查了一下,现在把解决办法跟附图一块儿奉上. 新建word文档: 默认版式: 设置自动编号所在工具栏位置: 设置选择: 最终结果:

  2. 强化学习复习笔记 - DEEP

    Outline 激活函数 使用逼近器的特点: 较少数量的参数表达复杂的函数 (计算复杂度) 对一个权重的调整可以影响到很多的点 (泛化能力) 多种特征表示和逼近器结构 (多样性) 激活函数 Sigmo ...

  3. C#DataGridView格式化显示单元格的内容

    今天又发现了一个很有用的东西,DataGridView的CellFormating事件 经常从数据库查到的原始数据需要经过转换之后显示在客户端,比如性别,“1”显示“男”,“0”显示“女”,为此经常将 ...

  4. linux 在线安装jdk

    1. yum -y list java* 2.yum -y install java-1.8.0-openjdk*

  5. 客户端实现WebService服务接口

    首先,要获得搭建好的WebService服务的WSDL,如要实现国内手机号码归属地查询WEB服务,其WSDL为:http://ws.webxml.com.cn/WebServices/MobileCo ...

  6. (电脑重置之后)win10在桌面点右键鼠标一直转圈;无法点击桌面图标;

    昨天重置系统之后,发现了这个毛病.桌面任务栏都能正常点击,就是一到桌面,无法点击桌面上面的图标(刚开机的时候还可以点).想新建文件夹来着,一点右键,鼠标即开始转圈圈.本来以为自己能好,结果第二天了还这 ...

  7. GitHub从小白到熟悉<四>

    GitHub issue 使用教程 创建 一个issue  (显示所有bug 或者 说 交流的 问题列表)

  8. VUE(下)

    VUE(下) VUE指令 表单指令 数据的双向指令 v-model = "变量" model绑定的变量,控制的是表单元素的value值 普通表单元素用v-model直接绑定控制va ...

  9. 剑指offer-和为S的两个数字-知识迁移能力-python

    题目描述 输入一个递增排序的数组和一个数字S,在数组中查找两个数,使得他们的和正好是S,如果有多对数字的和等于S,输出两个数的乘积最小的. 输出描述: 对应每个测试案例,输出两个数,小的先输出. 思路 ...

  10. JS基础_JS的HelloWorld

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...