1 定义画图函数,用来可视化数据分布

(注:jupyternotebook来编写的代码)

import  matplotlib.pyplot as plt
import numpy as np %config ZMQInteractiveShell.ast_node_interactivity='all'
def draw(X_train,y_train,X_new):
# 正负实例点初始化
X_po=np.zeros(X_train.shape[1])
X_ne=np.zeros(X_train.shape[1])
# 区分正、负实例点
for i in range(y_train.shape[0]):
if y_train[i]==1:
X_po=np.vstack((X_po,X_train[i]))
else:
X_ne=np.vstack((X_ne,X_train[i]))
# 实例点绘图
plt.plot(X_po[1:,0],X_po[1:,1],"g*",label="")
plt.plot(X_ne[1:, 0], X_ne[1:, 1], "rx", label="-1")
plt.plot(X_new[:, 0], X_new[:, 1], "bo", label="test_points")
# 测试点坐标值标注
for xy in zip(X_new[:, 0], X_new[:, 1]):
plt.annotate("test{}".format(xy),xy)
# 设置坐标轴
plt.axis([0,10,0,10])
plt.xlabel("x1")
plt.ylabel("x2")
# 显示图例
plt.legend()
# 显示图像
plt.show()

 2 KNN实现

import numpy as np
from collections import Counter
class KNN:
def __init__(self, X_train, y_train, k):
# 所需要的参数初始化
self.k = k
self.X_train = X_train
self.y_train = y_train def predict(self, X_new):
# 计算欧式距离
# np.linalg.norm() 表示求范数,ord = 2 表示求2阶范数
# 得到的结果形式为:[(d0, 1), (d1, -1), ...],其中d0和d1表示距离,1和-1表示标签
dist_list = [(np.linalg.norm(X_new - self.X_train[i], ord = 2), self.y_train[i]) for i in range(self.X_train.shape[0])]
# 对所有距离进行排序
dist_list.sort(key = lambda x : x[0])
# 取前k个最小距离对应的类型(也就是y值)
y_list = [dist_list[i][-1] for i in range(self.k)] # [-1, 1, 1 ,-1,...]
# 对上述k个点的分类进行统计
y_count = Counter(y_list).most_common() # [(-1, 3), (1, 2)]
return y_count[0][0]
def main():
# 训练数据集
X_train = np.array([
[5,4],
[9,6],
[4,7],
[2,3],
[8,1],
[7,2]
])
# 标签
y_train = np.array([1,1,1,-1,-1,-1])
# 测试数据
X_new = np.array([[5, 3]])
# 绘图
draw(X_train, y_train, X_new)
# k取不同值对分类结果的影响
for k in range(1,6,2): # 表示1-5每隔2个取一个数
# 构建KNN实例
clf = KNN(X_train, y_train, k=k)
# 对测试数据进行分类预测
y_predict = clf.predict(X_new)
print('k = {},被分类为:{}'.format(k, y_predict))
if __name__ == '__main__':
main()

 3 运行结果

K近邻实现的更多相关文章

  1. K近邻法(KNN)原理小结

    K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用.比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出 ...

  2. k近邻算法(knn)的c语言实现

    最近在看knn算法,顺便敲敲代码. knn属于数据挖掘的分类算法.基本思想是在距离空间里,如果一个样本的最接近的k个邻居里,绝大多数属于某个类别,则该样本也属于这个类别.俗话叫,"随大流&q ...

  3. 机器学习实战笔记--k近邻算法

    #encoding:utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as pl ...

  4. k近邻(KNN)复习总结

    摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合内容: 1.算法概述 K近邻算法是一种基本分类和回归方法:分类时,根据其K个最近邻的训练实例的类 ...

  5. scikit-learn K近邻法类库使用小结

    在K近邻法(KNN)原理小结这篇文章,我们讨论了KNN的原理和优缺点,这里我们就从实践出发,对scikit-learn 中KNN相关的类库使用做一个小结.主要关注于类库调参时的一个经验总结. 1. s ...

  6. 学习笔记——k近邻法

    对新的输入实例,在训练数据集中找到与该实例最邻近的\(k\)个实例,这\(k\)个实例的多数属于某个类,就把该输入实例分给这个类. \(k\) 近邻法(\(k\)-nearest neighbor, ...

  7. k近邻

    k近邻(k-NearestNeighbor)算法简称kNN.基本思想简单直接,对于一个需要分类的数据实例x,计算x与所有已知类别的样本点在特征空间中的距离.取与x距离最近的k个样本点,统计这些样本点所 ...

  8. K近邻分类法

    K近邻法 K近邻法:假定存在已标记的训练数据集,分类时对新的实例根据其K个最近邻的训练实例的类别,通过多数表决等分类决策规则进行预测. k近邻不具有显示学习的过程,是“懒惰学习”(lazy learn ...

  9. 机器学习PR:k近邻法分类

    k近邻法是一种基本分类与回归方法.本章只讨论k近邻分类,回归方法将在随后专题中进行. 它可以进行多类分类,分类时根据在样本集合中其k个最近邻点的类别,通过多数表决等方式进行预测,因此不具有显式的学习过 ...

  10. k近邻算法的Java实现

    k近邻算法是机器学习算法中最简单的算法之一,工作原理是:存在一个样本数据集合,即训练样本集,并且样本集中的每个数据都存在标签,即我们知道样本集中每一数据和所属分类的对应关系.输入没有标签的新数据之后, ...

随机推荐

  1. MySQL之Foreign_Key

    MySQL之Foregin_Key 一\\一对多 一.员工表和部门表 dep emp 类似与我们将所有的代码都写在一个py文件内 确立标语表之间的关系 思路:一定要要换位思考问题(必须两方都考虑周全之 ...

  2. 2019-8-31-MobaXterm-使用代理

    title author date CreateTime categories MobaXterm 使用代理 lindexi 2019-08-31 16:55:58 +0800 2018-02-13 ...

  3. grandson定理

    用处:求解同余线性方程组 inv:逆元 一堆物品 3个3个分剩2个 5个5个分剩3个 7个7个分剩2个 问这个物品有多少个 5*7*inv(5*7,  3) % 3  =  1 3*7*inv(3*7 ...

  4. string初始化

    #include <iostream> using namespace std; int main(int argc, const char * argv[]) { //通过const c ...

  5. GUI学习之二十五——QFontDialog学习总结

    今天学习字体对话框——QFontDialog()控件. QFontDialog()是继承自QDialog()的一个子类,用来选择给定的字体(包括字体.字号.样式等) 一.构造函数 QFontDialo ...

  6. CSRF拦截

    CSRF(Cross-site request forgery),中文名称:跨站请求伪造,也被称为:one click attack/session riding,缩写为:CSRF/XSRF. 事实上 ...

  7. 安装了sql-alchemy但导入sql_alchemy时失败

    问题描述:按成flask-sqlalchemy成功了,但是项目导入flask_alchemy时出错 但是,发现在代码中还是导入不了 之后发现问题,到file->setting->proje ...

  8. pip install mysql_python报错解决办法

    首先请注意,mysql_python只支持Python2,所以假如你是python3,就直接用python-connector去吧.下面这一条命令就可以了 pip install mysql-conn ...

  9. 【SaltStack官方版】—— EVENTS & REACTOR指南

    EVENTS & REACTOR Event System Event Bus Event types Salt Master Events Authentication events Sta ...

  10. __new__与__init__的区别

    __new__  : 控制对象的实例化过程 , 在__init__方法之前调用 __init__ : 对象实例化对象进行属性设置 class User: def __new__(cls, *args, ...