Dining

Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 24945   Accepted: 10985

Description

Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others.

Farmer John has cooked fabulous meals for his cows, but he forgot to check his menu against their preferences. Although he might not be able to stuff everybody, he wants to give a complete meal of both food and drink to as many cows as possible.

Farmer John has cooked F (1 ≤ F ≤ 100) types of foods and prepared D (1 ≤ D ≤ 100) types of drinks. Each of his N (1 ≤ N ≤ 100) cows has decided whether she is willing to eat a particular food or drink a particular drink. Farmer John must assign a food type and a drink type to each cow to maximize the number of cows who get both.

Each dish or drink can only be consumed by one cow (i.e., once food type 2 is assigned to a cow, no other cow can be assigned food type 2).

Input

Line 1: Three space-separated integers: NF, and D 
Lines 2..N+1: Each line i starts with a two integers Fi and Di, the number of dishes that cow i likes and the number of drinks that cow i likes. The next Fi integers denote the dishes that cow i will eat, and the Di integers following that denote the drinks that cow i will drink.

Output

Line 1: A single integer that is the maximum number of cows that can be fed both food and drink that conform to their wishes

Sample Input

4 3 3
2 2 1 2 3 1
2 2 2 3 1 2
2 2 1 3 1 2
2 1 1 3 3

Sample Output

3

Hint

One way to satisfy three cows is: 
Cow 1: no meal 
Cow 2: Food #2, Drink #2 
Cow 3: Food #1, Drink #1 
Cow 4: Food #3, Drink #3 
The pigeon-hole principle tells us we can do no better since there are only three kinds of food or drink. Other test data sets are more challenging, of course.

Source

  都在代码里了,干/drink.jpg

/*
POJ 3281 最大流 + 拆点
源点 -> food -> 牛左 -> 牛右 -> Drink -> 汇点
建图时注意将上面的所有边的容量设置为1,这样就可以保证一头牛
只吃一种食物喝一种饮料,转化之后肯定就知道是最大流了 拆点技巧:为了保证同一个东西满足两个条件,则将其拆分为两个
公共边的点分别进行求解。 嘤嘤嘤,为什么做完之后感觉这个题其实建图也是很好想的,就是拆个点,原谅自己太差
唉,都是幻觉
*/ #include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#include <vector>
using namespace std; const int maxn=+, INF = 0x3f3f3f3f;
struct Edge
{
Edge(){}
Edge(int from,int to,int cap,int flow):from(from),to(to),cap(cap),flow(flow){}
int from,to,cap,flow;
}; struct Dinic
{
int n,m,s,t; //结点数,边数(包括反向弧),源点与汇点编号
vector<Edge> edges; //边表 edges[e]和edges[e^1]互为反向弧
vector<int> G[maxn]; //邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
bool vis[maxn]; //BFS使用,标记一个节点是否被遍历过
int d[maxn]; //从起点到i点的距离
int cur[maxn]; //当前弧下标 void init(int n,int s,int t)
{
this->n=n,this->s=s,this->t=t;
for(int i=;i<=n;i++) G[i].clear();
edges.clear();
} void AddEdge(int from,int to,int cap)
{
edges.push_back( Edge(from,to,cap,) );
edges.push_back( Edge(to,from,,) );
m = edges.size();
G[from].push_back(m-);
G[to].push_back(m-);
} bool BFS()
{
memset(vis,false,sizeof(vis));
queue<int> Q;//用来保存节点编号的
Q.push(s);
d[s]=;
vis[s]=true;
while(!Q.empty())
{
int x=Q.front(); Q.pop();
for(int i=; i<G[x].size(); i++)
{
Edge& e=edges[G[x][i]];
if(!vis[e.to] && e.cap>e.flow)
{
vis[e.to]=true;
d[e.to] = d[x]+;
Q.push(e.to);
}
}
}
return vis[t];
} int DFS(int x,int a)
{
if(x==t || a==)return a;
int flow=,f;//flow用来记录从x到t的最小残量
for(int& i=cur[x]; i<G[x].size(); i++)
{
Edge& e=edges[G[x][i]];
if(d[x]+==d[e.to] && (f=DFS( e.to,min(a,e.cap-e.flow) ) )> )
{
e.flow +=f;
edges[G[x][i]^].flow -=f;
flow += f;
a -= f;
if(a==) break;
}
}
return flow;
} int Maxflow()
{
int flow=;
while(BFS())
{
memset(cur,,sizeof(cur));
flow += DFS(s,INF);
}
return flow;
}
}Dinic; int main() {
int n, f, a, b, c, d;
scanf("%d %d %d", &n, &f, &d);
int s = n * + f + d + , t = s + ;
Dinic.init(n, s, t);
for(int i = ; i <= f; i ++) {//n * 2 - 1 ~ n * 2 + f - 1存储从s -> 食物的边
Dinic.AddEdge(s, n * + i, );
}
for(int i = ; i <= d; i ++) {//n * 2 + f ~ n * 2 + f + d - 1存储从饮料 -> t的边
Dinic.AddEdge(n * + f + i, t, );
}
for(int i = ; i <= n; i ++) {
Dinic.AddEdge(i ,n + i, );//牛拆点之后的建立的边1 ~ 2 * n
scanf("%d %d", &a, &b);
for(int j = ; j < a; j ++) {
scanf("%d", &c);
Dinic.AddEdge(n * + c, i, );//食物与牛建边
}
for(int j = ; j < b; j ++) {
scanf("%d", &c);
Dinic.AddEdge(i + n, n * + f + c, );//饮料与牛建边
}
}
printf("%d\n", Dinic.Maxflow());//模版最大流?
return ;
}

<每日一题>Day 9:POJ-3281.Dining(拆点 + 多源多汇+ 网络流 )的更多相关文章

  1. POJ 3281 Dining (拆点)【最大流】

    <题目链接> 题目大意: 有N头牛,F种食物,D种饮料,每一头牛都有自己喜欢的食物和饮料,且每一种食物和饮料都只有一份,让你分配这些食物和饮料,问最多能使多少头牛同时获得自己喜欢的食物和饮 ...

  2. poj 3281 Dining 拆点 最大流

    题目链接 题意 有\(N\)头牛,\(F\)个食物和\(D\)个饮料.每头牛都有自己偏好的食物和饮料列表. 问该如何分配食物和饮料,使得尽量多的牛能够既获得自己喜欢的食物又获得自己喜欢的饮料. 建图 ...

  3. POJ 3281 Dining (网络流)

    POJ 3281 Dining (网络流) Description Cows are such finicky eaters. Each cow has a preference for certai ...

  4. POJ 3281 Dining(最大流)

    POJ 3281 Dining id=3281" target="_blank" style="">题目链接 题意:n个牛.每一个牛有一些喜欢的 ...

  5. poj 3281 Dining 网络流-最大流-建图的题

    题意很简单:JOHN是一个农场主养了一些奶牛,神奇的是这些个奶牛有不同的品味,只喜欢吃某些食物,喝某些饮料,傻傻的John做了很多食物和饮料,但她不知道可以最多喂饱多少牛,(喂饱当然是有吃有喝才会饱) ...

  6. 2018.07.06 POJ 1459 Power Network(多源多汇最大流)

    Power Network Time Limit: 2000MS Memory Limit: 32768K Description A power network consists of nodes ...

  7. POJ 3281 Dining(最大流+拆点)

    题目链接:http://poj.org/problem?id=3281 题目大意:农夫为他的 N (1 ≤ N ≤ 100) 牛准备了 F (1 ≤ F ≤ 100)种食物和 D (1 ≤ D ≤ 1 ...

  8. POJ 3281 Dining(最大流)

    http://poj.org/problem?id=3281 题意: 有n头牛,F种食物和D种饮料,每头牛都有自己喜欢的食物和饮料,每种食物和饮料只能给一头牛,每头牛需要1食物和1饮料.问最多能满足几 ...

  9. POJ 3281 Dining(网络流拆点)

    [题目链接] http://poj.org/problem?id=3281 [题目大意] 给出一些食物,一些饮料,每头牛只喜欢一些种类的食物和饮料, 但是每头牛最多只能得到一种饮料和食物,问可以最多满 ...

随机推荐

  1. python碎片 - 函数参数

    一个*传参: 方式1:如果想传一个列表中的值,实参前加*.如: *[1,2,3] 方式2:直接传入一个列表,不加*.如[1,2,3],则传入的是一整个列表,包括[] 两个**传参: 方式1,:{nam ...

  2. Delphi--长线程

    { 长线程, 开启:随应用程序启用而启动 关闭:岁应用程序关闭而结束 } unit uLongThread; interface uses Classes, ADODB, DB, ActiveX, S ...

  3. tomcat的内存配置

    WEB站点在跑安全测试时,跑一会儿就连接不上,考虑是否是tomcat内存溢出问题. Linux环境,修改Tomcat的内存配置: 修改bin/catalina.sh文件,在cygwin=false前面 ...

  4. Python---进阶---函数式编程---lambda

    一. 利用map()函数,把用户输入的不规范的英文,变成首字母大写,其他小写的规范的名字:比如说["ADMAm", "LISA", "JACK&quo ...

  5. 【NOIP2016提高A组8.12】奇袭

    题目 由于各种原因,桐人现在被困在Under World(以下简称UW)中,而UW马上要迎来最终的压力测试--魔界入侵. 唯一一个神一般存在的Administrator被消灭了,靠原本的整合骑士的力量 ...

  6. JDK5的新特性

    本篇博客内容 一.自动装箱和自动拆箱 二.泛型 三.增强for循环 四.静态导入 五.可变参数 六.枚举 一.自动装箱和自动拆箱  <=返回目录 java有8种基本数据类型  byte.shor ...

  7. sublime格式化

    https://nodejs.org/dist/v6.2.0/node-v6.2.0-x64.msi sublime格式化

  8. 【BZOJ1132】Tro(叉积)

    题意:平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和 N<=3000 N个点的坐标,其值在[0,10000] 思路:按从左到右的预处理点排序 每次枚举最左点作为原点,把叉积从大到小排 ...

  9. Vue包的下载

    第一步:先去官网下载Vue包:https://cn.vuejs.org/,找到教程. 第二步:Vue的包有以下引入方式(点击之后,跳转页面,直接将代码复制下来,放到新文件中,另存为即可使用Vue.js ...

  10. multipages-generator今日发布?!妈妈再也不用担心移动端h5网站搭建了!

    本文适合的读者?‍?‍?‍? 现在在手淘,京东,今日头条,美柚等过亿用户的手机app中的,都常见h5网页,他们有更新快,灵活,便于分享和传播的特性.这里有他们中的几个h5的例子:(手淘,美柚).这些a ...