LeetCode刷题记录

传送门

Description

An undirected, connected treewith N nodes labelled 0...N-1 and N-1 edges are given.

The ith edge connects nodes edges[i][0] and edges[i][1] together.

Return a list ans, where ans[i] is the sum of the distances between node i and all other nodes.

Example 1:

Input: N = 6, edges = [[0,1],[0,2],[2,3],[2,4],[2,5]]
Output: [8,12,6,10,10,10]
Explanation:
Here is a diagram of the given tree:
0
/ \
1 2
/|\
3 4 5
We can see that dist(0,1) + dist(0,2) + dist(0,3) + dist(0,4) + dist(0,5)
equals 1 + 1 + 2 + 2 + 2 = 8. Hence, answer[0] = 8, and so on.

Note: 1 <= N <= 10000

思路

题意:给出一棵树,求出树上每个节点到其他节点的距离总和。

题解:每个节点保存两个值,一个是其子树的节点个数(包括自身节点也要计数)nodesum[ ],一个是其子树各点到它的距离 dp[ ],那么我们假设根节点为 u ,其仅有一个儿子 v , u 到 v 的距离为 1 ,而 v 有若干儿子节点,那么 dp[v] 表示 v 的子树各点到 v 的距离和,那么各个节点到达 u 的距离便可以这样计算: dp[u] = dp[v] + nodesum[ v ] *1; (式子的理解,v 的一个儿子节点为 f,那么 f 到达 u 的距离为  (sum[ f ->v] + sum [v- > u])*1 ,dp[v] 包含了 sum[f->v]*1,所以也就是式子的分配式推广到各个子节点计算出来的和)。我们已经知道了各个节点到达根节点的距离和,那么从根节点开始递推下来可以得到各个点的距离和。另开一个数组表示每个节点的到其他节点的距离和,那么对于根节点u来说, dissum[u] = dp[u]。以 u 的儿子 v 为例, v 的子节点到 v 不必经过 v->u 这条路径,因此 dissum[u] 多了 nodesum[v] * 1,但是对于不是 v 的子节点的节点,只到达了 u ,因此要到达 v 必须多走 u->v 这条路径,因此 dissum[u] 少了 ( N - nodesum[v] ) * 1) ,所以 dissum[v] = dissum[u] - nodesum[v] * 1 + (N - nodesum[v] ) * 1,按照这个方法递推下去就可以得到各个点的距离和。

  

 1 class Solution {
2 private int tot = ;
3 private Edge[] edge;
4 private int[] head;
5 private int[] dp;
6 private int[] nodesum;
7 private int[] dissum;
8 public int[] sumOfDistancesInTree(int N, int[][] edges) {
9 edge = new Edge[ * N + ];
10 head = new int[N + ];
11 dp = new int[N + ];
12 nodesum = new int[N + ];
13 dissum = new int[N];
14 Arrays.fill(head,-);
15 for (int i = ;i < edges.length;i++){
16 int u = edges[i][];
17 int v = edges[i][];
18 addedge(u,v);
19 addedge(v,u);
20 }
21 dfs1(,);
22 dissum[] = dp[];
23 dfs2(,,N);
24 return dissum;
25 }
26
27 public void addedge(int u,int v){
28 edge[tot] = new Edge();
29 edge[tot].u = u;
30 edge[tot].v = v;
31 edge[tot].next = head[u];
32 head[u] = tot++;
33 }
34
35 public void dfs1(int u,int fa){
36 dp[u] = ;
37 nodesum[u] = ;
38 for (int i = head[u];i != -;i = edge[i].next){
39 int v = edge[i].v;
40 if (v == fa) continue;
41 dfs1(v,u);
42 dp[u] += dp[v] + nodesum[v];
43 nodesum[u] += nodesum[v];
44 }
45 }
46
47 public void dfs2(int u,int fa,int sum){
48 for (int i = head[u];i != -;i = edge[i].next){
49 int v = edge[i].v;
50 if (v == fa) continue;
51 dissum[v] = dissum[u] - nodesum[v] + sum - nodesum[v];
52 dfs2(v,u,sum);
53 }
54 }
55 class Edge{
56 int u,v,next;
57 }
58 }

[LeetCode] 834. Sum of Distances in Tree的更多相关文章

  1. [LeetCode] 834. Sum of Distances in Tree 树中距离之和

    An undirected, connected tree with N nodes labelled 0...N-1 and N-1 edges are given. The ith edge co ...

  2. 834. Sum of Distances in Tree —— weekly contest 84

    Sum of Distances in Tree An undirected, connected tree with N nodes labelled 0...N-1 and N-1 edges a ...

  3. 【leetcode】834. Sum of Distances in Tree(图算法)

    There is an undirected connected tree with n nodes labeled from 0 to n - 1 and n - 1 edges. You are ...

  4. [Swift]LeetCode834. 树中距离之和 | Sum of Distances in Tree

    An undirected, connected tree with N nodes labelled 0...N-1 and N-1 edges are given. The ith edge co ...

  5. 树中的路径和 Sum of Distances in Tree

    2019-03-28 15:25:43 问题描述: 问题求解: 写过的最好的Hard题之一. 初看本题,很经典的路径和嘛,dfs一遍肯定可以得到某个节点到其他所有节点的距离和.这种算法的时间复杂度是O ...

  6. leetcode834 Sum of Distances in Tree

    思路: 树形dp. 实现: class Solution { public: void dfs(int root, int p, vector<vector<int>>& ...

  7. LeetCode:Path Sum I II

    LeetCode:Path Sum Given a binary tree and a sum, determine if the tree has a root-to-leaf path such ...

  8. [LeetCode#110, 112, 113]Balanced Binary Tree, Path Sum, Path Sum II

    Problem 1 [Balanced Binary Tree] Given a binary tree, determine if it is height-balanced. For this p ...

  9. [LeetCode] Path Sum 二叉树的路径和

    Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all ...

随机推荐

  1. VB中RaiseEvent语句的功能及用法

    Creat a new class named Class1, it's codes like this: Public Event MyEvent() Public Sub RaiseTheEven ...

  2. so 调用

    dlsym dlopen dlclose

  3. angular,,以及深度拷贝问题;JSON.parse,JSON.stringify灵活运用

    问题: $scope.list = [];$scope.listTree = {};$scope.dataTree = []; //获取listTree的数据$scope.getList = func ...

  4. ThinkPHP生成静态页buildHtml方法

    原来ThinkPHP自带了生成静态页的函数buildHtml,使用起来很方便!最新的手册里没写这个方法,向大家介绍一下. PHP 1 2 3 4 5 6 7 8 9 10 11     protect ...

  5. FCC 成都社区·前端周刊 第 8 期

    01. 2018 前端开发者手册 这是一份 2018 前端开发手册,内容包括三个部分:前端工程实践.前端开发学习和前端开发工具. 详情:https://frontendmasters.com/book ...

  6. vue开发知识点总结

    一.vue介绍 Vue.js 是一套构建用户界面(UI)的渐进式JavaScript框架,是一个轻量级MVVM(model-view-viewModel)框架. 二.数据绑定 最常用的方式:Musta ...

  7. HDU-6278-Jsut$h$-index(主席树)

    链接: https://vjudge.net/problem/HDU-6278 题意: The h-index of an author is the largest h where he has a ...

  8. Android App学习计划

    模块化 Json Gson Fastjson Jackson EventBus GreenDao Flutter ButterKnife Dagger okhttp Rxjava/Rxandroid ...

  9. 3,ActiveMQ-入门(基于JMS发布订阅模型)

    一.Pub/Sub-发布/订阅消息传递模型 在发布/订阅消息模型中,发布者发布一个消息,该消息通过topic传递给所有的客户端.在这种模型中,发布者和订阅者彼此不知道对方,是匿名的且可以动态发布和订阅 ...

  10. 怎么实现超大文件上传 2-3GB

    1 背景 用户本地有一份txt或者csv文件,无论是从业务数据库导出.还是其他途径获取,当需要使用蚂蚁的大数据分析工具进行数据加工.挖掘和共创应用的时候,首先要将本地文件上传至ODPS,普通的小文件通 ...