AT2294 Eternal Average
Link
题目给我们的这个东西可以转化为一棵\(k\)叉树,有\(n+m\)个叶子节点,其中\(m\)个权值为\(1\),\(n\)个权值为\(0\),每个非叶子节点的权值为其儿子的平均值,现在问你根节点的权值有多少种取值。
转化之后发现似乎可做了一点。(当然还是一道神仙题)
我们设\(n\)个权值为\(0\)的叶子节点的深度为\(x_1\sim x_n\),\(m\)个权值为\(1\)的叶子节点的深度为\(y_1\sim y_m\),根节点的权值为\(z\)。
那么有\(\sum\limits_{i=1}^mk^{-y_i}=z\)。
并且如果我们把所有叶子节点的权值都设为\(1\),那么树上所有点的权值都为\(1\),\(\sum\limits_{i=1}^mk^{-y_i}+\sum\limits_{i=1}^nk^{-x_i}=1\)即\(\sum\limits_{i=1}^nk^{-x_i}=1-z\)。
我们将\(z\)写成\(k\)进制下的小数形式,\(z=0.\overline{c_1\cdots c_l}\)。
那么对于一个\(k^{-y_i}\),它会让\(c_{y_i}+1\)。
因此在不考虑进位的情况下,\(\sum\limits_{i=1}^lc_i=m\)。
进位实质上就是某一位\(-k\),高位\(+1\),反映到数位和上就是\(-(k-1)\)。
因此在考虑进位的情况下,\(\sum\limits_{i=1}^lc_i\equiv m(\mod k-1)\)。
当然也有\(\sum\limits_{i=1}^lc_i\le m\)。
对\(1-z\)做类似的分析。
我们可以发现\(1-z\)的数位和就是\(\sum\limits_{i=1}^l(k-1-c_i)+1=l(k-1)+1-\sum\limits_{i=1}^lc_i\)。
后面那坨就是\(z\)的数位和对吧。
与求\(z\)的数位和的性质的过程类似,我们有\(l(k-1)+1-\sum\limits_{i=1}^lc_i\equiv n(\mod k-1)\)。
以及\(l(k-1)+1-\sum\limits_{i=1}^lc_i\le n\)。
那么我们就可以设计一个数位dp了。
首先这个\(k\)叉树的深度最多为\(\frac{n+m-1}{k-1}\),也就是说\(z\)和\(1-z\)最多有\(\frac{n+m-1}{k-1}\)位。
我们设\(f_{i,j,k}\)表示考虑前\(i\)位小数,数位和为\(j\)时的方案数。注意到小数不能存在后导\(0\),我们再开一维\(k\)表示最后一位是不是\(0\)。
那么有\(f_{i,j,0}=f_{i-1,j,0}+f_{i-1,j,1}\),
以及\(f_{i,j,1}=\sum\limits_{o=\max(0,j-k)}^{j-1}(f_{i-1,o,0}+f_{i-1,o,1})\)。
前缀和优化一下就行了。
求答案的时候判一下第二维是否满足上面的\(z\)和\(1-z\)的\(4\)个条件(\(\sum c\le m\)的实际上可以不用判,因为循环里面最多跑到了\(m\)),而且注意一下只能加第三维为\(1\)的答案。
#include<cstdio>
#include<cctype>
const int N=2007,P=1000000007;
int inc(int a,int b){return a+=b,a>=P? a-P:a;}
int dec(int a,int b){return a-=b,a<0? a+P:a;}
int read(){int x;scanf("%d",&x);return x;}
int f[N<<1][N][2],s[N];
int main()
{
int n=read(),m=read(),k=read(),i,j,ans=0;
f[0][0][0]=1;
for(i=1;i<=(n+m-1)/(k-1);++i)
{
s[0]=inc(f[i-1][0][1],f[i-1][0][0]);
for(j=1;j<=m;++j) s[j]=inc(s[j-1],inc(f[i-1][j][0],f[i-1][j][1]));
for(j=0;j<=m;++j)
{
f[i][j][0]=inc(f[i-1][j][0],f[i-1][j][1]);
if(j) f[i][j][1]=dec(s[j-1],(j>=k? s[j-k]:0));
}
for(j=0;j<=m;++j) if(j%(k-1)==m%(k-1)&&(i*(k-1)+1-j)%(k-1)==n%(k-1)&&i*(k-1)+1-j<=n) ans=inc(ans,f[i][j][1]);
}
printf("%d",ans);
}
AT2294 Eternal Average的更多相关文章
- 【AGC009E】Eternal Average
[AGC009E]Eternal Average 题面 洛谷 题解 神仙题.jpg 我们把操作看成一棵\(k\)叉树,其中每个节点有权值,所有叶子节点(共\(n+m\)个)就是\(0\)或\(1\). ...
- AGC009:Eternal Average
传送门 好神啊 直接考虑一棵 \(n+m\) 个叶子的 \(k\) 叉树,根结点权值为 \(\sum_{i\in m}(\frac{1}{k})^{deep_i}\) 对于一个 \(deep\) 的序 ...
- AtCoder Grand Contest 009 E:Eternal Average
题目传送门:https://agc009.contest.atcoder.jp/tasks/agc009_e 题目翻译 纸上写了\(N\)个\(1\)和\(M\)个\(0\),你每次可以选择\(k\) ...
- AtCoder AGC009E Eternal Average (DP)
题目链接 https://atcoder.jp/contests/agc009/tasks/agc009_e 题解 又被劝退了... 第一步转化非常显然: 就等价于一开始有一个数\(1\), 有\(\ ...
- AGC009E Eternal Average
atc 神题orz 那个擦掉\(k\)个数然后写上一个平均值可以看成是\(k\)叉Huffman树的构造过程,每次选\(k\)个点合成一个新点,然后权值设为平均值.这些0和1都会在叶子的位置,同时每个 ...
- ZJOI2017 Day2
私のZJOI Day2 2017-3-22 08:00:07 AtCoder试题选讲 SYC(Sun Yican) from Shaoxing No.1 High School 2017-3-22 0 ...
- AtCoder Grand Contest 009
AtCoder Grand Contest 009 A - Multiple Array 翻译 见洛谷 题解 从后往前考虑. #include<iostream> #include< ...
- AtCoder Grand Contest
一句话题解 QwQ主要是因为这篇文章写的有点长……有时候要找某一个题可能不是很好找,所以写了这个东西. 具体的题意.题解和代码可以再往下翻._(:з」∠)_ AGC 001 C:枚举中点/中边. D: ...
- A`>G?~C009
A`>G?~C009 这场怎么才5题...看完猫的提交记录以为猫猫没写这场F A Multiple Array 直接做 B Tournament 直接树d C Division into Two ...
随机推荐
- python 数据库插入操作
数据库插入操作 以下实例使用执行 SQL INSERT 语句向表 EMPLOYEE 插入记录: #!/usr/bin/python # -*- coding: UTF-8 -*- import MyS ...
- docker启动redis并使用java连接
一.先查找镜像 docker search redis 二.拉取镜像 docker pull redis三.等待拉取完毕 四.查看拉去的镜像 docker iamges 五.运行redis 连接1:h ...
- T84341 Jelly的难题1
T84341 Jelly的难题1 题解 当窝发现窝的锅在读入这个矩阵的时候,窝..窝..窝.. 果然,一遇到和字符串有关的题就开始吹空调 好啦我们说说思路吧 BFS队列实现 拿出一个没有走过的点,扩展 ...
- cinder-----常用命令
云硬盘的创建查询 #创建卷类型 cinder type-create rbd #rbd是云硬盘类型名称,可自行定义 #查询卷类型 cinder type-list #卷类型扩展规格 cinder ty ...
- VS 2017 VC++项目出现 LNK1104 无法打开文件"libcmtd.lib" 的解决方法
今天用VS 2017编译一个以前的VC++动态库项目,出现了一个链接器问题: LNK1104 无法打开文件"libcmtd.lib" . 操作系统版本为:Windows 10 18 ...
- gradle 离线模式offline 用法
1. 离线模式 offline所谓离线模式offline,就是gradle在解析依赖的时候采用本地的依赖库(如 GRADLE_USER_HOME指定的路径),而不是依据项目build.gradle文件 ...
- ControlTemplate in WPF —— TreeView
<ResourceDictionary xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" x ...
- WPF图标拾取器
<Grid x:Name="LayoutRoot"> <Border BorderBrush="> <Border.Effect> & ...
- Prism学习--实现可插拔的模块
首先,在使用Prism框架加载的程序集中分别添加一个类,并让这些类实现IModule接口.当Prism框架加载某个程序集后,将首先在程序集中搜索实现了该接口的类.之后将会调用该接口的Initializ ...
- 如何利用Nginx的缓冲、缓存优化提升性能
使用缓冲释放后端服务器 反向代理的一个问题是代理大量用户时会增加服务器进程的性能冲击影响.在大多数情况下,可以很大程度上能通过利用Nginx的缓冲和缓存功能减轻. 当代理到另一台服务器,两个不同的连接 ...