什么是平衡树B-Tree?【转】
转载自:https://www.cnblogs.com/dongguacai/p/7239599.html#commentform
B-Tree就是我们常说的B树,一定不要读成B减树,否则就很丢人了。B树这种数据结构常常用于实现数据库索引,因为它的查找效率比较高。
磁盘IO与预读
磁盘读取依靠的是机械运动,分为寻道时间、旋转延迟、传输时间三个部分,这三个部分耗时相加就是一次磁盘IO的时间,大概9ms左右。这个成本是访问内存的十万倍左右;正是由于磁盘IO是非常昂贵的操作,所以计算机操作系统对此做了优化:预读;每一次IO时,不仅仅把当前磁盘地址的数据加载到内存,同时也把相邻数据也加载到内存缓冲区中。因为局部预读原理说明:当访问一个地址数据的时候,与其相邻的数据很快也会被访问到。每次磁盘IO读取的数据我们称之为一页(page)。一页的大小与操作系统有关,一般为4k或者8k。这也就意味着读取一页内数据的时候,实际上发生了一次磁盘IO。
B-Tree与二叉查找树的对比
我们知道二叉查找树查询的时间复杂度是O(logN),查找速度最快和比较次数最少,既然性能已经如此优秀,但为什么实现索引是使用B-Tree而不是二叉查找树,关键因素是磁盘IO的次数。
数据库索引是存储在磁盘上,当表中的数据量比较大时,索引的大小也跟着增长,达到几个G甚至更多。当我们利用索引进行查询的时候,不可能把索引全部加载到内存中,只能逐一加载每个磁盘页,这里的磁盘页就对应索引树的节点。
一、 二叉树
我们先来看二叉树查找时磁盘IO的次:定义一个树高为4的二叉树,查找值为10:
第一次磁盘IO:
第二次磁盘IO
第三次磁盘IO:
第四次磁盘IO:
从二叉树的查找过程了来看,树的高度和磁盘IO的次数都是4,所以最坏的情况下磁盘IO的次数由树的高度来决定。
从前面分析情况来看,减少磁盘IO的次数就必须要压缩树的高度,让瘦高的树尽量变成矮胖的树,所以B-Tree就在这样伟大的时代背景下诞生了。
二、B-Tree
m阶B-Tree满足以下条件:
1、每个节点最多拥有m个子树
2、根节点至少有2个子树
3、分支节点至少拥有m/2颗子树(除根节点和叶子节点外都是分支节点)
4、所有叶子节点都在同一层、每个节点最多可以有m-1个key,并且以升序排列
如下有一个3阶的B树,观察查找元素21的过程:
第一次磁盘IO:
第二次磁盘IO:
这里有一次内存比对:分别跟3与12比对
第三次磁盘IO:
这里有一次内存比对,分别跟14与21比对
从查找过程中发现,B树的比对次数和磁盘IO的次数与二叉树相差不了多少,所以这样看来并没有什么优势。
但是仔细一看会发现,比对是在内存中完成中,不涉及到磁盘IO,耗时可以忽略不计。另外B树种一个节点中可以存放很多的key(个数由树阶决定)。
相同数量的key在B树中生成的节点要远远少于二叉树中的节点,相差的节点数量就等同于磁盘IO的次数。这样到达一定数量后,性能的差异就显现出来了。
三、B树的新增
在刚才的基础上新增元素4,它应该在3与9之间:
四、B树的删除
删除元素9:
五、总结
插入或者删除元素都会导致节点发生裂变反应,有时候会非常麻烦,但正因为如此才让B树能够始终保持多路平衡,这也是B树自身的一个优势:自平衡;B树主要应用于文件系统以及部分数据库索引,如MongoDB,大部分关系型数据库索引则是使用B+树实现。
什么是平衡树B-Tree?【转】的更多相关文章
- C++ pbds 库平衡树(tree)
头文件 #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> //或者直接 ...
- bzoj 3223/tyvj 1729 文艺平衡树 splay tree
原题链接:http://www.tyvj.cn/p/1729 这道题以前用c语言写的splay tree水过了.. 现在接触了c++重写一遍... 只涉及区间翻转,由于没有删除操作故不带垃圾回收,具体 ...
- 数据库索引<一> 索引结构表结构
有很长时间没有更新博客了,再过几天都2月分了,如果再不更新一篇,我1月分都没有更新,保持连续,今天更新一篇. 最近没有什么看技术方面的东西,游戏,画画搞这些去了.我发现我每年一到年底就是搞这些东西,其 ...
- STL笔记(2) STL之父访谈录
年3月,dr.dobb's journal特约记者, 著名技术书籍作家al stevens采访了stl创始人alexander stepanov. 这份访谈纪录是迄今为止对于stl发展历史的最完备介绍 ...
- Linux文件系统及常用命令
Linux文件系统介绍: 一 .Linux文件结构 文件结构是文件存放在磁盘等存贮设备上的组织方法.主要体现在对文件和目录的组织上.目录提供了管理文件的一个方便而有效的途径. Linux使用树状目录结 ...
- 非旋 treap 结构体数组版(无指针)详解,有图有真相
非旋 $treap$ (FHQ treap)的简单入门 前置技能 建议在掌握普通 treap 以及 左偏堆(也就是可并堆)食用本blog 原理 以随机数维护平衡,使树高期望为logn级别, FHQ ...
- AVL树、splay树(伸展树)和红黑树比较
AVL树.splay树(伸展树)和红黑树比较 一.AVL树: 优点:查找.插入和删除,最坏复杂度均为O(logN).实现操作简单 如过是随机插入或者删除,其理论上可以得到O(logN)的复杂度,但是实 ...
- python — 索引与pymysql模块
1. 索引 1.1 索引原理 1.什么是索引 ?-- 目录 索引就是建立起的一个在存储表阶段就有的一个存储结构,能在查询的时候加速. 2.索引的重要性: 读写比例 为 10:1,所有读(查询)的速度就 ...
- mysql那些事之索引篇
mysql那些事之索引篇 上一篇博客已经简单从广的方面介绍了一下mysql整体架构以及物理结构的内容. 本篇博客的内容是mysql的索引,索引无论是在面试还是我们日常工作中都是非常的重要一环. 索引是 ...
- 小白也能看懂的Redis教学基础篇——朋友面试被Skiplist跳跃表拦住了
各位看官大大们,双节快乐 !!! 这是本系列博客的第二篇,主要讲的是Redis基础数据结构中ZSet(有序集合)底层实现之一的Skiplist跳跃表. 不知道那些是Redis基础数据结构的看官们,可以 ...
随机推荐
- 如何限制只有某些IP才能使用Tomcat Manager
只有指定的主机或IP地址才可以访问部署在Tomcat下的应用.Tomcat提供了两个参数供你配置:RemoteHostValve 和RemoteAddrValve,前者用于限制主机名,后者用于限制IP ...
- c++后台开发面试常见知识点总结(四)数据库
数据库的索引类型 聚集索引和非聚集索引的区别(叶节点存储内容) 唯一性索引和主码索引的区别 索引的优缺点,什么时候使用索引,什么时候不能使用索引(重点) 索引最左前缀问题 数据库中事务的ACID 数据 ...
- window.onload中失效的问题
在页面中,我们有时候想让页面加载的时候有多个JS事件,一般的时候我们会这样做 window.onload=function(){ alert("aaa"); } window.on ...
- Windows下Tomcat安装 + eclipse-Server配置
一.Tomcat安装 1.安装 解压安装包到自己的电脑上,建议不要解压到中文目录下 2.配置 网上有些安装教程提到需要配置CATALINA_HOME环境变量,此变量指向了tomcat 的目录,主要是为 ...
- BeanUtils.copyProperties()拷贝属性时,忽略空值
把source的属性值复制给target的相同属性上,注意:双方需要复制的属性要有get.set方法 BeanUtils.copyProperties(source, target, PublicUt ...
- Vue学习笔记【30】——Vue路由(watch属性的使用)
考虑一个问题:想要实现 名 和 姓 两个文本框的内容改变,则全名的文本框中的值也跟着改变:(用以前的知识如何实现???) 监听data中属性的改变: <div id="app&quo ...
- Qt 无法连接mysql数据库的问题
错误信息: QSqlDatabase: QMYSQL driver not loaded QSqlDatabase: available drivers: QSQLITE QMYSQL QMYSQL ...
- Python基础(三):简化除法判断、分析apache访问日志、扫描存活主机、利用多线程实现ssh并发访问
一.简化除法判断 目标: 编写mydiv.py脚本,主要要求如下: 提示用户输入一个数字作为除数 如果用户按下Ctrl+C或Ctrl+D则退出程序 如果用户输入非数字字符,提示用户应该输入数字 如果用 ...
- delphi xe 正则表达式
Delphi XE 中自带了正则表达式的处理类TRegEx,包含在单元 RegularExpressions,使用时要uses 一下. TRegEx 是一个结构 ,使用时不用释放.他内部还是 ...
- delphi 获取系统注册的文件图标
var Icon:TICON; Key : string; App : string; Index : Integer; begin FileName:=Edit6.Text; then begin ...