CF914D
CF914D
用线段树乱搞一下就行qwq
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
const int M = 3000001;
int n,m,k,a[M],d[M],al,ar,tp,s;
int gcd(int x,int y)
{
if(!y) return x;
return gcd(y,x%y);
}
void built(int now,int l,int r)
{
if(l==r)
{
d[now]=a[l];
return ;
}
int mid=(l+r)>>1;
built(now*2,l,mid);
built(now*2+1,mid+1,r);
d[now]=gcd(d[now*2],d[now*2+1]);
}
void ask(int now,int l,int r,int L,int R,int k)
{
if(l==r)
{
s++;
return;
}
int mid=(l+r)>>1;
if(L<=l && r<=R)
{
if(d[now]%k==0) return ;
if(d[now*2]%k && d[now*2+1]%k) return s+=2,void();
if(d[now*2]%k) ask(now*2,l,mid,L,R,k);
else ask(now*2+1,mid+1,r,L,R,k);
return ;
}
if(d[now*2]%k && L<=mid) ask(now*2,l,mid,L,R,k);
if(s>1) return;
if(d[now*2+1]%k && R>mid) ask(now*2+1,mid+1,r,L,R,k);
return;
}
void mody(int now,int l,int r,int x,int k)
{
if(l==r) return d[now]=k, void();
int mid=(l+r)>>1;
if(x<=mid) mody(now*2,l,mid,x,k);
else mody(now*2+1,mid+1,r,x,k);
d[now]=gcd(d[now*2],d[now*2+1]);
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
built(1,1,n);
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
scanf("%d",&tp);
if(tp==1)
{
scanf("%d%d%d",&al,&ar,&k);
s=0; ask(1,1,n,al,ar,k);
if(s<2) printf("YES\n");
else printf("NO\n");
}
else
{
scanf("%d%d",&al,&ar);
mody(1,1,n,al,ar);
}
}
}
CF914D的更多相关文章
- [CF914D]Bash and a Tough Math Puzzle
给定一个数列$a_1,a_2,...,a_n$,支持两种操作 1 l r x,猜测数列中[l,r]位置上的数的最大公约数$x$,判断这个猜测是否是接近正确的.如果我们可以在数列[l,r]位置中改动至多 ...
- cf914D. Bash and a Tough Math Puzzle(线段树)
题意 题目链接 Sol 直接在线段树上二分 当左右儿子中的一个不是\(x\)的倍数就继续递归 由于最多递归到一个叶子节点,所以复杂度是对的 开始时在纠结如果一段区间全是\(x\)的两倍是不是需要特判, ...
- CF914D Bash and a Tough Math Puzzle 线段树+gcd??奇怪而精妙
嗯~~,好题... 用线段树维护区间gcd,按如下法则递归:(记题目中猜测的那个数为x,改动次数为tot) 1.若子区间的gcd是x的倍数,不递归: 2.若子区间的gcd是x的倍数,且没有递归到叶子结 ...
- [CF914D]Sum the Fibonacci
题目 点这里看题目. 分析 我们先放宽条件,重新定义五元组\((a,b,c,d,e)\)如下: 1.\(1\le a,b,c,d,e\le n\). 2.\(s_a\&s_b= ...
- Noip前的大抱佛脚----赛前任务
赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...
- Noip 训练指南
目录 Noip 训练指南 图论 数据结构 位运算 期望 题解 Noip 训练指南 目前完成 \(4 / 72\) 图论 [ ] 跳楼机 [ ] 墨墨的等式 [ ] 最优贸易 [ ] 泥泞的道路 [ ] ...
- 在$CF$水题の记录
CF1158C CF1163E update after CF1173 很好,我!expert!掉rating了!! 成为pupil指日可待== 下次要记得合理安排时间== ps.一道题都没写的\(a ...
- D. Bash and a Tough Math Puzzle 解析(線段樹、數論)
Codeforce 914 D. Bash and a Tough Math Puzzle 解析(線段樹.數論) 今天我們來看看CF914D 題目連結 題目 給你一個長度為\(n\)的數列\(a\), ...
随机推荐
- Fatal Error -26000: Not enough memory (12320 bytes) for “new buffer in LrwSrvNetTaskIt 问题解决及lr脚本心得
Fatal Error -26000: Not enough memory (12320 bytes) for “new buffer in LrwSrvNetTaskIt 问题解决及lr脚本心得 2 ...
- Java中的HashMap的2种遍历方式比较
首先我们准备数据,准备一个map Map<String, String> map = new HashMap<String, String>(); for (int i = 0 ...
- SpringMVC学习(11):表单标签
本篇我们来学习Spring MVC表单标签的使用,借助于Spring MVC提供的表单标签可以让我们在视图上展示WebModel中的数据更加轻松. 一.首先我们先做一个简单了例子来对Spring MV ...
- elasticsearch 嵌套对象使用Multi Match Query、query_string全文检索设置
参考: https://www.elastic.co/guide/en/elasticsearch/reference/1.7/mapping-nested-type.html https://sta ...
- shell位置参数的遍历
- C语言实现Windows下获取IP和MAC地址。
C语言实现Windows下获取IP和MAC地址. #include <winsock2.h> #include <stdio.h> #include <stdlib.h& ...
- 如何在YouTube上下载视频
1,首先要有科学上网的工具 2,详细说明:https://en.savefrom.net/1-how-to-download-youtube-video/
- 【leetcode】552. Student Attendance Record II
题目如下: Given a positive integer n, return the number of all possible attendance records with length n ...
- Spring data jpa 依赖配置
<properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> &l ...
- python--函数的返回值、函数参数的使用、名称空间与作用域、函数嵌套、函数对象
今天学习内容有函数的返回值.函数参数的使用.名称空间与作用域.函数嵌套. 下来我们一一查看. 函数的返回值 看几个栗子: def func(x): y=func() print(y) def foo( ...