题目链接

Solution

去掉中间一段区间 \([l,r]\) 后剩下的平均值可以表示为 :

\[\frac{\sum^{n}_{i=1}{v_i}-\sum^{r}_{i=l}{v_i}}{n-(r-l+1)}
\]

二分的答案如果要满足条件,即:

\[\frac{\sum^{n}_{i=1}{v_i}-\sum^{r}_{i=l}{v_i}}{n-(r-l+1)}<Ans
\]

移一下项,然后可以得到:

\[{\sum^{n}_{i=1}{(v_i-Ans)}<\sum^{r}_{i=l}{(v_i-Ans)}}
\]

然后这两个式子的意义就是全局 \(v_i-Ans\) 的和比中间这段 \(v_i-Ans\) 要小.

所以只需要有一段前缀和与一段后缀和之和小于等于 \(0\) ,那么答案即满足条件。

Code

#include<bits/stdc++.h>
#define db double
#define ll long long
#define inf 0x3f3f3f3f3f3f3f
#define N 100008
using namespace std;
const db opt=0.00001; void in(ll &x)
{
char ch=getchar();ll f=1,w=0;
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){w=w*10+ch-'0';ch=getchar();}
x=f*w; return;
} db a[N];ll n; bool judge(db st)
{
db sum[N],dum[N],sm[N],dm[N];
sum[0]=dum[N+1]=0;
sm[0]=dm[n+1]=inf;
for(int i=1;i<=n;i++)
sum[i]=sum[i-1]+a[i]-st,
sm[i]=min(sm[i-1],sum[i]);
for(int i=n;i>=1;i--)
dum[i]=dum[i+1]+a[i]-st,
dm[i]=min(dm[i+1],dum[i]);
for(int i=2;i<n;i++)
if(sm[i-1]+dm[i+1]<=0)return 1;
return 0;
} int main()
{
db ans=inf,l=inf,r=0;
in(n);
for(int i=1;i<=n;i++)
{
ll x; in(x);
a[i]=x*1.0;
l=min(a[i],l);
r=max(a[i],r);
}
while(l<=r)
{
db mid=(l+r)/2;
if(judge(mid))ans=min(ans,mid),r=mid-opt;
else l=mid+opt;
}
if(ans==inf)printf("%.3lf\n",(a[1]+a[n])/(2*1.0));
else printf("%.3lf\n",ans);
return 0;
}

[USACO14MAR] 破坏Sabotage(二分答案,分数规划)的更多相关文章

  1. [USACO14MAR] Sabotage 二分答案 分数规划

    [USACO14MAR] Sabotage 二分答案 分数规划 最终答案的式子: \[ \frac{sum-sum[l,r]}{n-len[l,r]}\le ans \] 转换一下: \[ sum[1 ...

  2. [USACO14MAR]破坏Sabotage 二分答案

    题目描述 Farmer John's arch-nemesis, Farmer Paul, has decided to sabotage Farmer John's milking equipmen ...

  3. P2115 [USACO14MAR]破坏(二分答案)

    给定一串数,问删除中间一段,剩下的平均数最小是多少: 不容易想到这是个二分. $solution:$ 来手玩一点式子: 首先很容易想到一个前缀和$sum_i $表示i到1的前缀和,这样就能很容易地O( ...

  4. LuoguP2115 [USACO14MAR]破坏Sabotage【二分答案】By cellur925

    本来是想找一道生成树的题做的...结果被洛咕的标签骗到了这题...结果是二分答案与生成树一点mao关系都没有.... 题目大意:给你一个序列,请你删去某一个$l~r$区间的值($2<=i< ...

  5. BZOJ 4819 Luogu P3705 [SDOI2017]新生舞会 (最大费用最大流、二分、分数规划)

    现在怎么做的题都这么水了.. 题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4819 (luogu) https://ww ...

  6. [USACO14MAR]破坏Sabotage

    还是二分答案,发现我的$check$函数不太一样,来水一发题解 列一下式子 $$\frac{sum-sum[l,r]}{n-(r-l+1)}<=ans$$ 乘过去 $$sum-sum[l,r]& ...

  7. P2115 [USACO14MAR]破坏Sabotage

    题意:给你一个正整数序列,让你删去一段区间内的数[l,r] $1<l\le r <n$ 使得剩余的数平均值最小$n\le 10^5$ 1.不难想到暴力,用前缀和优化$O(n^2)$ #in ...

  8. BZOJ 3477: [Usaco2014 Mar]Sabotage( 二分答案 )

    先二分答案m, 然后对于原序列 A[i] = A[i] - m,  然后O(n)找最大连续子序列和, 那么此时序列由 L + mx + R组成. L + mx + R = sum - n * m, s ...

  9. 洛谷2115 [USACO14MAR]破坏Sabotage

    https://www.luogu.org/problem/show?pid=2115 题目描述 Farmer John's arch-nemesis, Farmer Paul, has decide ...

随机推荐

  1. centos6.5搭建禅道

    linux用一键安装包 简介:本文介绍如何在linux下面使用禅道一键安装包搭建禅道的运行环境. 一.安装 二.如何访问数据库 linux一键安装包内置了XXD.apache, php, mysql这 ...

  2. failed to open stream: HTTP request failed! HTTP/1.1 505 HTTP Version Not Supported

    PHP模拟GET请求支付宝退款链接(未用sdk  自己拼接的请求链接与参数); 起初用file_get_contents();就报错 :failed to open stream: HTTP requ ...

  3. Android安全测试(二)反编译检测

    1.测试环境 SDK: Java JDK, Android SDK. 工具: 7zip, dex2jar, jd-gui 2.操作步骤 第一步:把apk改后缀名为zip 第二步:将zip文件解压,得到 ...

  4. 配置Trunk接口

    实验内容 本实验模拟某公司网络场景.公司规模较大,员工200余名,内部网络是-一个大的局域网.公司放置了多台接入交换机(如S1和S2)负责员工的网络接入.接入交换机之间通过汇聚交换机S3相连.公司通过 ...

  5. [Web 前端] 020 css 定位之绑定定位

    绑定定位 少废话,上例子 <!DOCTYPE html> <html> <head> <meta charset="utf-8"> ...

  6. C#中Func与Action的理解

    Action 与 Func是.NET类库中增加的内置委托,以便更加简洁方便的使用委托.最初使用委托时,均需要先定义委托类型,然后定义一个符合委托类型签名的函数,在调用前,需声明并创建委托对象,将指定函 ...

  7. java学习day3运算符

    一.算数运算符 1.对于除号“/”,它的整数除和小数除是有区别的:当整数除以整数的时候,会把结果的小数部分舍弃,只保留整数部分,例如: int x=3510; x=x/1000; 输出结果为x=3; ...

  8. java_第一年_JavaWeb(11)

    自定义标签:主要是用来移除JSP页面中的java代码. 先从一个简单的案例了解其怎么移除代码: 一个正常的jsp页面: <%@ page language="java" pa ...

  9. js中return、return false 、return true各自代表什么含义

    return语句代表需要返回一个值,如果不需要就不需要使用return语句.都类似一个出口,return 可以结束方法体中 return后面部分代码的执行.return false 或者 return ...

  10. 搜索(DFS)---查找最大连通面积

    查找最大的连通面积 695. Max Area of Island (Medium) [[0,0,1,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1,1,1,0,0,0] ...