http://codeforces.com/contest/1201/problem/D

题意:n行m列的矩阵中,有k个targets,从[1, 1]出发,每次只能向上下左右四个方向移动一步,且只有在q个safecolumns上进行向上移动,最少需要多少次移动才能获得所有的targets。(2≤n,m,k,q≤2*10^5,q≤m)。

  

思路:

Make two arrays: left and right. left[i] is the treasure in the leftmost position in row i (0 if there are no treasures in row ii). right[i] is the treasure in the rightmost cell in row ii (0 if there are no treasures in row ii).

We can simply take out rows where there is no treasure (and add 1 to the result if there are treasure above that line, because we have to move up there).

For every row, except the last, we have to leave that row at one of the safe columns. Let's notice that the last treasure we collect in the row will be either left[i] or right[i]. Let's take a look at both possibilities: If we collect the left[i] treasure last, we have to leave the row either going left or going right to the closest safe column, because going further wouldn't worth it (consider moving up earlier and keep doing the same thing at row i+1). The same is true for right[i]. For the first row, we start at the first column, we can calculate the moves required to go up the second row at the for cells. For all the other rows, we have 4 possibilities, and we have to calculate how many moves it takes to reach the row i+1 at the 4 possible columns. For the last row, we don't have to reach a safe column, we just have to collect all the treasures there. We can count the answer for the problem from the calculated results from the previous row. Time complexity: O(16∗n)

1. 对于存在宝藏的行,最后得到的宝藏要么是最左边的要么是最右边的;

2. 假设最后拿到的是最左边的,那么可以通过这个宝藏左右最近的safecolumns离开;最后拿到的是最右边的情况也同理;

3. 对于第一行来说,若有宝藏,则获得最右边的宝藏后离开;所无宝藏,则通过离[1, 1]最近的safecolumn离开;

4. 对于其他行来说,最多可以有四种方式离开此行,最后一行不需要到达safecolumn,获得所有宝藏即可;

宝藏左右最近的safecolumn,可以通过binary search求得。

注意,若最左边的宝藏就在safecolumn上,则其左右最近的safecolumn都是此列。

#include <iostream>
#include <set>
#include <vector>
#include <algorithm>
#include <queue>
using namespace std; typedef long long LL; int findSafe(vector<int>& safes, int x){
int l = , r = safes.size()-, ret;
while(l <= r){
int m = (l+r)>>;
if(safes[m] == x)
return m;
if(safes[m] > x)
r = m - ;
else{
ret = m;
l = m + ;
}
}
return ret;
} int dist(int layer, int p1, int p2, vector<int>& leftmost, vector<int>& rightmost, vector<int>& safecol){
if(safecol[p1] > safecol[p2])
swap(p1, p2);
int d = safecol[p2] - safecol[p1];
if(rightmost[layer] > safecol[p2])
d += * (rightmost[layer]-safecol[p2]);
if(leftmost[layer] < safecol[p1])
d += * (safecol[p1]-leftmost[layer]);
return d;
} int main(){
int n, k, m, q;
cin>>n>>m>>k>>q;
vector<int> leftmost(n+, m+), rightmost(n+, ), safecol{};
for(int i=; i<k; i++){
int row, col;
cin>>row>>col;
leftmost[row] = min(leftmost[row], col);
rightmost[row] = max(rightmost[row], col);
}
for(int i=; i<q; i++){
int safe;
cin>>safe;
safecol.push_back(safe);
} sort(safecol.begin(), safecol.end()); while(leftmost[n] == m+) n--; if(n==){
cout<<rightmost[]-<<endl;
return ;
}
vector<LL> now_step{, , ,}, lst_step{, , , };
vector<int> lst_gate{-, -, -, -};
if(rightmost[] == ){
int rsafe = findSafe(safecol, );
if(safecol[rsafe] < )
rsafe++;
lst_gate[] = rsafe;
lst_step[] = safecol[rsafe]-;
}else{
int lsafe = findSafe(safecol, rightmost[]);
//cout<<rightmost[1]<<"*"<<lsafe<<endl;
lst_gate[] = lsafe;
lst_step[] = *rightmost[]-safecol[lsafe]-;
//cout<<"l10:"<<lst_step[0]<<endl;
if(safecol[lsafe]<rightmost[] && lsafe+ < safecol.size()){
lst_gate[] = lsafe+;
lst_step[] = safecol[lsafe+]-;
}
} for(int i=; i<n; i++){
if(leftmost[i] == m+){
for(int j=; j<; j++)
lst_step[j]++;
continue;
}else{
vector<int> now_gate{-, -, -, -};
int g1 = findSafe(safecol, leftmost[i]);
int g2 = findSafe(safecol, rightmost[i]);
//cout<<g1<<" "<<g2<<endl;
now_gate[] = g1;
if(safecol[g1] < leftmost[i] && g1+ < safecol.size())
now_gate[] = g1+;
now_gate[] = g2;
if(safecol[g2] < rightmost[i] && g2+ < safecol.size())
now_gate[] = g2+;
for(int j=; j<; j++){
now_step[j] = (*1e5+) * (*1e5);
for(int u=; u<; u++)
if(lst_gate[u]> && now_gate[j]>){
int d = +dist(i,now_gate[j], lst_gate[u], leftmost, rightmost, safecol);
//cout<<now_gate[j]<<" "<<lst_gate[u]<<endl;
//cout<<"d:"<<i<<" "<<d<<endl;
//cout<<"ld:"<<" "<<lst_step[u]<<endl;
now_step[j] = min(now_step[j], lst_step[u]+d);
}
}
lst_step = now_step;
lst_gate = now_gate;
}
}
LL ret = (*1e5+) * (*1e5);
for(int u=; u<; u++)
if(lst_gate[u] > ){
int d = +rightmost[n]-leftmost[n]+min(abs(rightmost[n]-safecol[lst_gate[u]]), abs(leftmost[n]-safecol[lst_gate[u]]));
//cout<<"d:"<<" "<<d<<endl;
//cout<<"lst_step:"<<lst_step[u]<<endl;
ret = min(ret, lst_step[u]+d);
}
printf("%I64d\n", ret);
return ;
}

codeforces_D. Treasure Hunting_[DP+Binary Search]的更多相关文章

  1. 96. Unique Binary Search Trees (Tree; DP)

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  2. Unique Binary Search Trees(dp)

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  3. Unique Binary Search Trees I&II——给定n有多少种BST可能、DP

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  4. [LeetCode] Unique Binary Search Trees 独一无二的二叉搜索树

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  5. [LeetCode] Unique Binary Search Trees II 独一无二的二叉搜索树之二

    Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...

  6. Leetcode 86. Unique Binary Search Trees

    本题利用BST的特性来用DP求解.由于BST的性质,所以root左子树的node全部<root.而右子树的node全部>root. 左子树 = [1, j-1], root = j, 右子 ...

  7. Unique Binary Search Trees

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  8. LeetCode-96. Unique Binary Search Trees

    Description: Given n, how many structurally unique BST's (binary search trees) that store values 1.. ...

  9. LeeCode - Unique Binary Search Trees

    题目: Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For e ...

随机推荐

  1. Navicat12安装与激活

    安装Navicat 1.下载软件和激活工具 链接:https://pan.baidu.com/s/1pFo2BkZYPpPFldG-fhbzIA&shfl=sharepset 提取码:xs97 ...

  2. PHPstorm Xdebugger最全详细

    0 Xdebug调试的原理(选看) 图0-1 单机调试原理示意图 图0-2 多机调试原理示意图 对于PHP开发,初来咋到,开发环境的搭建和理解感觉是最烦人的一件事了.不像JAVA,打开一个Eclips ...

  3. Websocket如何建立连接

    前面提到,WebSocket复用了HTTP的握手通道.具体指的是,客户端通过HTTP请求与WebSocket服务端协商升级协议.协议升级完成后,后续的数据交换则遵照WebSocket的协议. 1.客户 ...

  4. IDEA常用快揵键

    IDEA常用快揵键 工作中常用IDEA快捷键 参见博客:https://www.cnblogs.com/zhangpengshou/p/5366413.html Double shift    --- ...

  5. ToolProvider.getSystemJavaCompiler()方法空指针的排坑

    起因: 我在做一个编译Java代码的功能,基本写的差不多了,我就想把它打包部署到我服务器上跑一跑,但是这不做不知道,一做果然就出了问题.我在IDEA上跑一点问题都没有,但是打包成Jar后,后台就显示空 ...

  6. JMeter学习笔记16-如何输出HTML格式的性能测试报告

    文本来学习下,如何输入HTML格式的JMeter测试报告.前面已经介绍, 如果要做性能测试,需要在GUI上设计好你的Test Plan,设置各种场景和负载值,包括多少个线程,多少个用户,循环多少次.设 ...

  7. String的相关操作总结

    Java中的String与常量池 string是java中的字符串.String类是不可变的,对String类的任何改变,都是返回一个新的String类对象. string是java中的字符串.Str ...

  8. Codeforces 691E题解 DP+矩阵快速幂

    题面 传送门:http://codeforces.com/problemset/problem/691/E E. Xor-sequences time limit per test3 seconds ...

  9. require 和 import 详解

    前言 JS模块化编程是前端小伙伴们必不可少的知识,下面妹子将于自认为比较清晰的方式列举出来. 1 require 特点: 1.运行时加载 2.拷贝到本页面 3.全部引入 1.1 CommonJS No ...

  10. H5白屏问题

    前言 前阵子弄了灰度环境,H5这边需要给灰度环境的接口加上Cookie,配置的期间遇到一些Cookie问题以及白屏在此记录下 1.H5请求接口带不上Cookie 解决方法:前端使用了 webpack ...