题目链接

题意 : 其实就是要求

分析 :

先暴力将次方通过第二类斯特林数转化成下降幂 ( 套路?)

然后再一步步化简、使得最外层和 N 有关的 ∑ 划掉

这里有个技巧就是

将组合数的表达式放到一边、然后通过组合意义来化简

然后就可以 O( k ^ 2 ) 算出答案了

另外化到后面其实有种产生

这里可以用另外一种方式化简

考虑其组合意义

相当于先从 n 个数中挑出 i 个数、然后再从 i 个数中取 j 个进行排列

其他数可选可不选

具体可以看 Click here

#include<bits/stdc++.h>
#define LL long long
#define ULL unsigned long long

#define scs(i) scanf("%s", i)
#define sci(i) scanf("%d", &i)
#define scd(i) scanf("%lf", &i)
#define scIl(i) scanf("%I64d", &i)
#define scii(i, j) scanf("%d %d", &i, &j)
#define scdd(i, j) scanf("%lf %lf", &i, &j)
#define scIll(i, j) scanf("%I64d %I64d", &i, &j)
#define sciii(i, j, k) scanf("%d %d %d", &i, &j, &k)
#define scddd(i, j, k) scanf("%lf %lf %lf", &i, &j, &k)
#define scIlll(i, j, k) scanf("%I64d %I64d %I64d", &i, &j, &k)
#define sciiii(i, j, k, l) scanf("%d %d %d %d", &i, &j, &k, &l)
#define scdddd(i, j, k, l) scanf("%lf %lf %lf %lf", &i, &j, &k, &l)
#define scIllll(i, j, k, l) scanf("%I64d %I64d %I64d %I64d", &i, &j, &k, &l)

#define lson l, m, rt<<1
#define rson m+1, r, rt<<1|1
#define lowbit(i) (i & (-i))
#define mem(i, j) memset(i, j, sizeof(i))

#define fir first
#define sec second
#define VI vector<int>
#define ins(i) insert(i)
#define pb(i) push_back(i)
#define pii pair<int, int>
#define VL vector<long long>
#define mk(i, j) make_pair(i, j)
#define all(i) i.begin(), i.end()
#define pll pair<long long, long long>

#define _TIME 0
#define _INPUT 0
#define _OUTPUT 0
clock_t START, END;
void __stTIME();
void __enTIME();
void __IOPUT();
using namespace std;
;
;

LL S[maxn][maxn];

inline void init()
{
    S[][] = ;
    ; i<maxn; i++){
        ; j<=i; j++){
            S[i][j] = ( S[i-][j-] + (LL)j * S[i-][j] % mod ) % mod;
        }
    }
}

LL pow_mod(LL a, LL b)
{
    a %= mod;
    LL ret = ;
    while(b){
        ) ret = ret * a % mod;
        a = a * a % mod;
        b >>= ;
    }return ret;
}

int main(void){__stTIME();__IOPUT();

    init();

    LL n, k;

    scIll(n, k);

    LL ans = ;
    LL fac = ;
    ; j<=min(n, k); j++){
        ans = (ans + ( (S[k][j] * fac % mod) * pow_mod(, n-j) ) %mod) % mod;
        fac = fac * (n-j) % mod;
    }

    ) ans--;

    printf("%I64d\n", ans);

__enTIME();;}

void __stTIME()
{
    #if _TIME
        START = clock();
    #endif
}

void __enTIME()
{
    #if _TIME
        END = clock();
        cerr<<"execute time = "<<(double)(END-START)/CLOCKS_PER_SEC<<endl;
    #endif
}

void __IOPUT()
{
    #if _INPUT
        freopen("in.txt", "r", stdin);
    #endif
    #if _OUTPUT
        freopen("out.txt", "w", stdout);
    #endif
}

Codeforces 932 E Team Work ( 第二类斯特林数、下降阶乘幂、组合数学 )的更多相关文章

  1. CF932E Team Work(第二类斯特林数)

    题目 CF932E Team Work 前置:斯特林数\(\Longrightarrow\)点这里 做法 \[\begin{aligned}\\ &\sum\limits_{i=1}^n C_ ...

  2. CF932E Team Work——第二类斯特林数

    题解 n太大,而k比较小,可以O(k^2)做 想方设法争取把有关n的循环变成O(1)的式子 考虑用公式: 来替换i^k 原始的组合数C(n,i)一项,考虑能否和后面的系数分离开来,直接变成2^n处理. ...

  3. 【CF932E】Team Work(第二类斯特林数)

    [CF932E]Team Work(第二类斯特林数) 题面 洛谷 CF 求\(\sum_{i=1}^nC_{n}^i*i^k\) 题解 寒假的时候被带飞,这题被带着写了一遍.事实上并不难,我们来颓柿子 ...

  4. Codeforces Round #100 E. New Year Garland (第二类斯特林数+dp)

    题目链接: http://codeforces.com/problemset/problem/140/E 题意: 圣诞树上挂彩球,要求从上到下挂\(n\)层彩球.已知有\(m\)种颜色的球,球的数量不 ...

  5. Codeforces 1528F - AmShZ Farm(转化+NTT+推式子+第二类斯特林数)

    Codeforces 题目传送门 & 洛谷题目传送门 神仙题,只不过感觉有点强行二合一(?). 首先考虑什么样的数组 \(a\) 符合条件,我们考虑一个贪心的思想,我们从前到后遍历,对于每一个 ...

  6. CF932E Team Work(第二类斯特林数)

    传送门:CF原网 洛谷 题意:给定 $n,k$,求 $\sum\limits^n_{i=1}\dbinom{n}{i}i^k\bmod(10^9+7)$. $1\le n\le 10^9,1\le k ...

  7. 【cf932E】E. Team Work(第二类斯特林数)

    传送门 题意: 求\(\displaystyle \sum_{i=0}^n{n\choose i}i^k,n\leq 10^9,k\leq 5000\). 思路: 将\(i^k\)用第二类斯特林数展开 ...

  8. codeforces 1278F - Cards(第二类斯特林数+二项式)

    传送门 解题过程: \(答案=\sum^n_{i=0}*C^i_n*{\frac{1}{m}}^i*{\frac{m-1}{m}}^{n-i}*i^k\) 根据第二类斯特林数的性质\(n^k=\sum ...

  9. Gym - 101147G G - The Galactic Olympics —— 组合数学 - 第二类斯特林数

    题目链接:http://codeforces.com/gym/101147/problem/G G. The Galactic Olympics time limit per test 2.0 s m ...

随机推荐

  1. powershell 删除7天前的文件

    powershell 删除7天前的文件 $today=Get-Date #"今天是:$today" #昨天 #"昨天是:$($today.AddDays(-1))&quo ...

  2. springBoot中tomcat默认端口修改

    springboot在启动tomcat的默认端口是8080,在实际开发中,应客户要求必须使用80端口. 研究springboot后发现有两种方式可以实现修改tomcat的端口 第一.直接修改appli ...

  3. Python input/output boilerplate for competitive programming

    The following code is my submission for Codeforces 1244C The Football Season. import io import sys i ...

  4. POJ - 1149 PIGS (建图思维+最大流)

    (点击查看原题) 题目分析 (以下均为 Edelweiss 大佬的思路,博主承认自己写不了这么好,但是学习的心促使我记录下这个好题的写法,所以代码是我写的) [题目大意] 有 M 个猪圈,每个猪圈里初 ...

  5. Thinkphp6框架学习:($this->error()undefined)Call to undefined method app\index\controller\Admin::error()

    最近在使用Thinkphp6框架的时候,想做一个初始化来验证登录状态. 当没有Session::get(‘adminUid’)的时候就应该跳转到admin\adminLogin的方法中,和以前Tp5的 ...

  6. TOPK 问题

    TOPK 问题 描述 如从海量数字中寻找最大的 k 个,这类问题我们称为 TOPK 问题,通常使用堆来解决: 求前 k 大,用最小堆 求前 k 小,用最大堆 例子 现有列表 [1, 2, 0, 3, ...

  7. sed---流文本操作

    一:sed基本命令 sed的使用格式 sed [optiona] 'command' files sed 参数[-nefir] 动作[n1,[n2]] function sed -n:只有经过sed特 ...

  8. c# 转换Image为Icon

    /// <summary> /// 转换Image为Icon /// </summary> /// <param name="image">要转 ...

  9. springboot的一些注解

    springboot注解以及一些晦涩难理解的点介绍 @Validated 用于注入数值校验的注解(JSR303数据校验) @PropertySource 用于加载指定的配置文件,例如@Property ...

  10. Slimvoice快速而小巧

    这可行吗?绝对没问题.完全加载的最大页面只有230 KB.因为所有内容都被缓存和压缩,所以随后查看的每个页面只有大约6 KB,这比我见过的具有相同功能的SPA要小得多. Slimvoice快速而小巧, ...