Python数模笔记-Sklearn(4)线性回归
1、什么是线性回归?
回归分析(Regression analysis)是一种统计分析方法,研究自变量和因变量之间的定量关系。回归分析不仅包括建立数学模型并估计模型参数,检验数学模型的可信度,也包括利用建立的模型和估计的模型参数进行预测或控制。按照输入输出变量关系的类型,回归分析可以分为线性回归和非线性回归。
线性回归(Linear regression) 假设样本数据集中的输出变量(y)与输入变量(X)存在线性关系,即输出变量是输入变量的线性组合。线性模型是最简单的模型,也是非常重要和应用广泛的模型。
如果模型只有一个输入变量和一个输出变量,称为一元线性模型,可以用一条直线来描述输出与输入的关系,其表达式是一元一次方程:
y = w0 + w1*x1 + e
如果模型包括两个或多个输入变量,则称为多元线性模型,可以用一个平面或超平面来描述输出与输入的关系,其表达式是多元一次方程:
Y = w0 + w1*x1 + w2*x2+...+ wm*xm + e
采用最小二乘法(Least square method)可以通过样本数据来估计回归模型的参数,使模型的输出与样本数据之间的误差平方和最小。
回归分析还要进一步分析究竟能不能采用线性回归模型,或者说线性关系的假设是否合理、线性模型是否具有良好的稳定性?这就需要使用统计分析进行显著性检验,检验输入与输出变量之间的线性关系是否显著,用线性模型来描述它们之间的关系是否恰当。
2、SKlearn 中的线性回归方法(sklearn.linear_model)
以机器学习的角度来看,回归是广泛应用的预测建模方法,线性回归是机器学习中重要的基础算法。SKlearn 机器学习工具包提供了丰富的线性模型学习方法,最重要和应用最广泛的无疑是普通最小二乘法(Ordinary least squares,OLS),此外多项式回归(Polynomial regression)、逻辑回归(Logistic Regression)和岭回归(Ridge regression)也较为常用,将在本文及后续文中介绍。其它方法相对比较特殊,以下根据官网介绍给出简要说明,普通读者可以略过。
- 普通最小二乘法(Ordinary least squares):
以模型预测值与样本观测值的残差平方和最小作为优化目标。 - 岭回归(Ridge regression)
在普通最小二乘法的基础上增加惩罚因子以减少共线性的影响,以带惩罚项(L2正则化)的残差平方和最小作为优化目标。在指标中同时考虑了较好的学习能力以及较小的惯性能量,以避免过拟合而导致模型泛化能力差。 - Lasso 回归(Least absolute shrinkage and selection operator)
在普通最小二乘法的基础上增加绝对值偏差作为惩罚项(L1正则化)以减少共线性的影响,在拟合广义线性模型的同时进行变量筛选和复杂度调整,适用于稀疏系数模型。 - 多元 Lasso 回归(Multi-task Lasso)
用于估计多元回归稀疏系数的线性模型。注意不是指多线程或多任务,而是指对多个输出变量筛选出相同的特征变量(也即回归系数整列为 0,因此该列对应的输入变量可以被删除)。 - 弹性网络回归(Elastic-Net)
引入L1和L2范数正则化而构成带有两种惩罚项的模型,相当于岭回归和 Lasso 回归的组合。 - Multi-task Elastic-Net
用于估计多元回归稀疏系数线性模型的弹性网络回归方法。 - 最小角回归算法(Least Angle Regression)
结合前向梯度算法和前向选择算法,在保留前向梯度算法的精确性的同时简化迭代过程。每次选择都加入一个与相关度最高的自变量,最多 m步就可以完成求解。特别适合于特征维度远高于样本数的情况。 - LARS Lasso
使用最小角回归算法求解 Lasso模型。 - 正交匹配追踪法(Orthogonal Matching Pursuit)
用于具有非零系数变量数约束的近似线性模型。在分解的每一步进行正交化处理,选择删除与当前残差最大相关的列,反复迭代达到所需的稀疏程度。 - 贝叶斯回归(Bayesian Regression)
用贝叶斯推断方法求解的线性回归模型,具有贝叶斯统计模型的基本性质,可以求解权重系数的概率密度函数。可以被用于观测数据较少但要求提供后验分布的问题,例如对物理常数的精确估计;也可以用于变量筛选和降维。 - 逻辑回归(Logistic Regression)
逻辑回归是一种广义线性模型,研究顺序变量或属性变量作为输出的问题,实际是一种分类方法。通过线性模型加Sigmoid映射函数,将线性模型连续型输出变换为离散值。常用于估计某种事物的可能性,如寻找危险因素、预测发病概率、判断患病概率,是流行病学和医学中最常用的分析方法。 - 广义线性回归(Generalized Linear Regression)
广义线性回归是线性回归模型的推广,实际上是非线性模型。通过单调可微的联结函数,建立输出变量与输入变量的线性关系,将问题简洁直接地转化为线性模型来处理。 - 随机梯度下降(Stochastic Gradient Descent)
梯度下降是一种基于搜索的最优化方法,用梯度下降法来求损失函数最小时的参数估计值,适用样本数(和特征数)非常非常大的情况。随机梯度下降法在计算下降方向时,随机选一个数据进行计算,而不是扫描全部训练数据集,加快了迭代速度。 - 感知机(Perceptron)
感知机是一种适合大规模学习的简单分类算法。训练速度比SGD稍快,并且产生的模型更稀疏。 - 被动攻击算法(Passive Aggressive Algorithms)
被动攻击算法是一类用于大规模学习的算法。 - 鲁棒性回归(Robustness regression)
鲁棒性回归的目的是在存在损坏数据的情况下拟合回归模型,如存在异常值或错误的情况。 - 多项式回归(Polynomial regression)
多项式回归通过构造特征变量的多项式来扩展简单的线性回归模型。例如将特征变量组合成二阶多项式,可以将抛物面拟合到数据中,从而具有更广泛的灵活性和适应性。
3、SKlearn 中的最小二乘线性回归方法
3.1 最小二乘线性回归类(LinearRegression )
SKlearn 包中的 LinearRegression() 方法,不宜从字面理解为线性回归方法, LinearRegression() 仅指基于普通最小二乘法(OLS)的线性回归方法。
sklearn.linear_model.LinearRegression 类是 OLS 线性回归算法的具体实现,官网介绍详见:https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression
sklearn.linear_model.LinearRegression()
class sklearn.linear_model.LinearRegression(*, fit_intercept=True, normalize=False, copy_X=True, n_jobs=None, positive=False)
LinearRegression() 类的参数不多,通常几乎不需要设置。
- fit_intercept:bool, default=True 是否计算截距。默认值 True,计算截距。
- normalize:bool, default=False 是否进行数据标准化,该参数仅在 fit_intercept = True 时有效。
- n_jobs:int, default=None 计算时设置的任务数,为 n>1和大规模问题提供加速。默认值 任务数为 1。
LinearRegression() 类的主要属性:
- coef_: 线性系数,即模型参数 w1... 的估计值
- intercept_: 截距,即模型参数 w0 的估计值
LinearRegression() 类的主要方法:
- fit(X,y[,sample_weight]) 用样本集(X, y)训练模型。sample_weight 为每个样本设权重,默认None。
- get_params([deep]) 获取模型参数。注意不是指模型回归系数,而是指fit_intercept,normalize等参数。
- predict(X) 用训练的模型预测数据集 X 的输出。即可以对训练样本给出模型输出结果,也可以对测试样本给出预测结果。
- score(X,y[,sample_weight]) R2 判定系数,是常用的模型评价指标。
3.2 一元线性回归
LinearRegression 使用例程:
# skl_LinearR_v1a.py
# Demo of linear regression by scikit-learn
# Copyright 2021 YouCans, XUPT
# Crated:2021-05-12
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error, median_absolute_error
# 生成测试数据:
nSample = 100
x = np.linspace(0, 10, nSample) # 起点为 0,终点为 10,均分为 nSample个点
e = np.random.normal(size=len(x)) # 正态分布随机数
y = 2.36 + 1.58 * x + e # y = b0 + b1*x1
# 按照模型要求进行数据转换:输入是 array类型的 n*m 矩阵,输出是 array类型的 n*1 数组
x = x.reshape(-1, 1) # 输入转换为 n行 1列(多元回归则为多列)的二维数组
y = y.reshape(-1, 1) # 输出转换为 n行1列的二维数组
# print(x.shape,y.shape)
# 一元线性回归:最小二乘法(OLS)
modelRegL = LinearRegression() # 创建线性回归模型
modelRegL.fit(x, y) # 模型训练:数据拟合
yFit = modelRegL.predict(x) # 用回归模型来预测输出
# 输出回归结果 XUPT
print('回归截距: w0={}'.format(modelRegL.intercept_)) # w0: 截距
print('回归系数: w1={}'.format(modelRegL.coef_)) # w1,..wm: 回归系数
# 回归模型的评价指标 YouCans
print('R2 确定系数:{:.4f}'.format(modelRegL.score(x, y))) # R2 判定系数
print('均方误差:{:.4f}'.format(mean_squared_error(y, yFit))) # MSE 均方误差
print('平均绝对值误差:{:.4f}'.format(mean_absolute_error(y, yFit))) # MAE 平均绝对误差
print('中位绝对值误差:{:.4f}'.format(median_absolute_error(y, yFit))) # 中值绝对误差
# 绘图:原始数据点,拟合曲线
fig, ax = plt.subplots(figsize=(8, 6))
ax.plot(x, y, 'o', label="data") # 原始数据
ax.plot(x, yFit, 'r-', label="OLS") # 拟合数据
ax.legend(loc='best') # 显示图例
plt.title('Linear regression by SKlearn (Youcans)')
plt.show() # YouCans, XUPT
程序说明:
- 线性回归模型 LinearRegression() 类在模型训练 modelRegL.fit(x, y) 时,要求输入 x 和输出 y 数据格式为 array类型的 n*m 矩阵。一元回归模型 m=1,也要转换为 n*1 的 array类型:
x = x.reshape(-1, 1) # 输入转换为 n行 1列(多元回归则为多列)的二维数组
y = y.reshape(-1, 1) # 输出转换为 n行1列的二维数组
- LinearRegression() 类提供的模型评价指标只有 R2指标,但在 sklearn.metrics 包中提供了均方误差、平均绝对值误差和中位绝对值误差,例程中给出了其使用方法。
程序运行结果:
回归截距: w0=[2.45152704]
回归系数: w1=[[1.57077698]]
R2 确定系数:0.9562
均方误差:0.9620
平均绝对值误差:0.7905
中位绝对值误差:0.6732
3.2 多元线性回归
用 LinearRegression() 解决多元线性回归问题与一元线性回归的步骤、参数和属性都是相同的,只是要注意样本数据的格式要求:输入数据 X 是 array 类型的 n*m 二维数组,输出数据 y 是 array类型的 n*1 数组(也可以用 n*k 表示多变量输出)。
问题描述:
数据文件 toothpaste.csv 中收集了 30个月牙膏销售量、价格、广告费用及同期的市场均价。
(1)分析牙膏销售量与价格、广告投入之间的关系,建立数学模型;
(2)估计所建立数学模型的参数,进行统计分析;
(3)利用拟合模型,预测在不同价格和广告费用下的牙膏销售量。
需要说明的是,本文例程并不是问题最佳的求解方法和结果,只是使用该问题及数据示范读取数据文件和数据处理的方法。
LinearRegression 使用例程:
# skl_LinearR_v1b.py
# Demo of linear regression by scikit-learn
# v1.0d: 线性回归模型(SKlearn)求解
# Copyright 2021 YouCans, XUPT
# Crated:2021-05-12
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy import stats
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, mean_absolute_error, median_absolute_error
# 主程序
def main(): # 主程序
# 读取数据文件
readPath = "../data/toothpaste.csv" # 数据文件的地址和文件名
dfOpenFile = pd.read_csv(readPath, header=0, sep=",") # 间隔符为逗号,首行为标题行
dfData = dfOpenFile.dropna() # 删除含有缺失值的数据
print(dfData.head())
# Model 1:Y = b0 + b1*X1 + b2*X2 + e
# 线性回归:分析因变量 Y(sales) 与 自变量 x1(diffrence)、x2(advertise) 的关系
# 按照模型要求进行数据转换:输入是 array类型的 n*m 矩阵,输出是 array类型的 n*1 数组
feature_cols = ['difference', 'advertise'] # 创建特征列表
X = dfData[feature_cols] # 使用列表选择样本数据的特征子集
y = dfData['sales'] # 选择样本数据的输出变量
# print(type(X),type(y))
# print(X.shape, y.shape)
# 一元线性回归:最小二乘法(OLS)
modelRegL = LinearRegression() # 创建线性回归模型
modelRegL.fit(X, y) # 模型训练:数据拟合
yFit = modelRegL.predict(X) # 用回归模型来预测输出
# 输出回归结果 # YouCans, XUPT
print("\nModel1: Y = b0 + b1*x1 + b2*x2")
print('回归截距: w0={}'.format(modelRegL.intercept_)) # w0: 截距
print('回归系数: w1={}'.format(modelRegL.coef_)) # w1,..wm: 回归系数
# 回归模型的评价指标
print('R2 确定系数:{:.4f}'.format(modelRegL.score(X, y))) # R2 判定系数
print('均方误差:{:.4f}'.format(mean_squared_error(y, yFit))) # MSE 均方误差
print('平均绝对值误差:{:.4f}'.format(mean_absolute_error(y, yFit))) # MAE 平均绝对误差
print('中位绝对值误差:{:.4f}'.format(median_absolute_error(y, yFit))) # 中值绝对误差
# Model 3:Y = b0 + b1*X1 + b2*X2 + b3*X2**2 + e
# 线性回归:分析因变量 Y(sales) 与 自变量 x1、x2 及 x2平方的关系
x1 = dfData['difference'] # 价格差,x4 = x1 - x2
x2 = dfData['advertise'] # 广告费
x5 = x2**2 # 广告费的二次元
X = np.column_stack((x1,x2,x5)) # [x1,x2,x2**2]
# 多元线性回归:最小二乘法(OLS)
modelRegM = LinearRegression() # 创建线性回归模型
modelRegM.fit(X, y) # 模型训练:数据拟合
yFit = modelRegM.predict(X) # 用回归模型来预测输出
# 输出回归结果 # YouCans, XUPT
print("\nModel3: Y = b0 + b1*x1 + b2*x2 + b3*x2**2")
print('回归截距: w0={}'.format(modelRegM.intercept_)) # w0: 截距, YouCans
print('回归系数: w1={}'.format(modelRegM.coef_)) # w1,..wm: 回归系数, XUPT
# 回归模型的评价指标
print('R2 确定系数:{:.4f}'.format(modelRegM.score(X, y))) # R2 判定系数
print('均方误差:{:.4f}'.format(mean_squared_error(y, yFit))) # MSE 均方误差
print('平均绝对值误差:{:.4f}'.format(mean_absolute_error(y, yFit))) # MAE 平均绝对误差
print('中位绝对值误差:{:.4f}'.format(median_absolute_error(y, yFit))) # 中值绝对误差
# 计算 F统计量 和 F检验的 P值
m = X.shape[1]
n = X.shape[0]
yMean = np.mean(y)
SST = sum((y-yMean)**2) # SST: 总平方和
SSR = sum((yFit-yMean)**2) # SSR: 回归平方和
SSE = sum((y-yFit)**2) # SSE: 残差平方和
Fstats = (SSR/m) / (SSE/(n-m-1)) # F 统计量
probFstats = stats.f.sf(Fstats, m, n-m-1) # F检验的 P值
print('F统计量:{:.4f}'.format(Fstats))
print('FF检验的P值:{:.4e}'.format(probFstats))
# 绘图:原始数据点,拟合曲线
fig, ax = plt.subplots(figsize=(8, 6)) # YouCans, XUPT
ax.plot(range(len(y)), y, 'b-.', label='Sample') # 样本数据
ax.plot(range(len(y)), yFit, 'r-', label='Fitting') # 拟合数据
ax.legend(loc='best') # 显示图例
plt.title('Regression analysis with sales of toothpaste by SKlearn')
plt.xlabel('period')
plt.ylabel('sales')
plt.show()
return
if __name__ == '__main__':
main()
程序运行结果:
Model1: Y = b0 + b1*x1 + b2*x2
回归截距: w0=4.4074933246887875
回归系数: w1=[1.58828573 0.56348229]
R2 确定系数:0.8860
均方误差:0.0511
平均绝对值误差:0.1676
中位绝对值误差:0.1187
Model3: Y = b0 + b1*x1 + b2*x2 + b3*x2**2
回归截距: w0=17.324368548878198
回归系数: w1=[ 1.30698873 -3.69558671 0.34861167]
R2 确定系数:0.9054
均方误差:0.0424
平均绝对值误差:0.1733
中位绝对值误差:0.1570
F统计量:82.9409
F检验的P值:1.9438e-13
程序说明:
- 用 LinearRegression() 类处理多元线性回归问题,模型对训练样本数据的格式要求为:输入数据 X 是 array 类型的 n*m 二维数组,输出数据 y 是 array类型的 n*1 数组(也可以用 n*k 表示多变量输出)。例程中给出了两种数据转换的方式:Model 1 从 Pandas 的 dataframe 数据转换得到模型要求的 array 类型二维数组,这在 Pandas 读取数据文件时非常方便;Model3 则用 Numpy 的 np.column_stack 数组拼接获得 array 类型二维数组。
- 本例程的问题和数据《Python学习笔记-StatsModels 统计回归(3)模型数据的准备》中相同,来自:姜启源、谢金星《数学模型(第 3版)》,高等教育出版社。
- 为了便于与 StatsModels 统计回归结果进行比较,例程所采用的模型也与该文一致:Model1 中使用特征变量 'difference', 'advertise' 建立线性回归模型,Model3 中使用特征变量 'difference', 'advertise' 及 'advertise' 的二次项( x2**2)建立线性回归模型。SKlearn 与 StatsModels 对这两个模型的参数估计结果、预测结果和 R2确定系数都完全相同,表明用 SKlearn 与 StatsModels 工具包都可以实现线性回归。
- StatsModels 工具包提供的模型检验的指标非常全面、详细,对模型检验和统计分析非常重要。而 SKlearn 包所提供的统计检验指标很少,F检验、T 检验、相关系数的显著性检验指标都没有,根本原因在于 SKlearn 是机器学习库而非统计工具箱,关注点是模型精度和预测性能,而不在于模型的显著性。
- 为了解决缺少模型显著性检验指标的问题,例程中增加了一段 计算 F统计量 和 F检验P值 的程序可供参考。
版权说明:
本文内容及例程为作者原创,并非转载书籍或网络内容。
YouCans 原创作品
Copyright 2021 YouCans, XUPT
Crated:2021-05-12
Python数模笔记-Sklearn(4)线性回归的更多相关文章
- Python数模笔记-Sklearn(1) 介绍
1.SKlearn 是什么 Sklearn(全称 SciKit-Learn),是基于 Python 语言的机器学习工具包. Sklearn 主要用Python编写,建立在 Numpy.Scipy.Pa ...
- Python数模笔记-Sklearn(2)样本聚类分析
1.分类的分类 分类的分类?没错,分类也有不同的种类,而且在数学建模.机器学习领域常常被混淆. 首先我们谈谈有监督学习(Supervised learning)和无监督学习(Unsupervised ...
- Python数模笔记-Sklearn(3)主成分分析
主成分分析(Principal Components Analysis,PCA)是一种数据降维技术,通过正交变换将一组相关性高的变量转换为较少的彼此独立.互不相关的变量,从而减少数据的维数. 1.数据 ...
- Python数模笔记-Sklearn(5)支持向量机
支持向量机(Support vector machine, SVM)是一种二分类模型,是按有监督学习方式对数据进行二元分类的广义线性分类器. 支持向量机经常应用于模式识别问题,如人像识别.文本分类.手 ...
- Python数模笔记-StatsModels 统计回归(4)可视化
1.如何认识可视化? 图形总是比数据更加醒目.直观.解决统计回归问题,无论在分析问题的过程中,还是在结果的呈现和发表时,都需要可视化工具的帮助和支持. 需要指出的是,虽然不同绘图工具包的功能.效果会有 ...
- Python数模笔记-StatsModels 统计回归(1)简介
1.关于 StatsModels statsmodels(http://www.statsmodels.org)是一个Python库,用于拟合多种统计模型,执行统计测试以及数据探索和可视化. 2.文档 ...
- Python数模笔记-Scipy库(1)线性规划问题
1.最优化问题建模 最优化问题的三要素是决策变量.目标函数和约束条件. (1)分析影响结果的因素是什么,确定决策变量 (2)决策变量与优化目标的关系是什么,确定目标函数 (3)决策变量所受的限制条件是 ...
- Python数模笔记-NetworkX(3)条件最短路径
1.带有条件约束的最短路径问题 最短路径问题是图论中求两个顶点之间的最短路径问题,通常是求最短加权路径. 条件最短路径,指带有约束条件.限制条件的最短路径.例如,顶点约束,包括必经点或禁止点的限制:边 ...
- Python数模笔记-(1)NetworkX 图的操作
1.NetworkX 图论与网络工具包 NetworkX 是基于 Python 语言的图论与复杂网络工具包,用于创建.操作和研究复杂网络的结构.动力学和功能. NetworkX 可以以标准和非标准的数 ...
随机推荐
- certutil绕过
一般进内网过后我都会使用certutil下载文件,但在最近打一台内网机子的时候出现了certutil拒绝访问的情况,在本地搭建了一个环境尝试绕过certutil下载文件. 安装杀软更新到最新版本,开启 ...
- 庐山真面目之十四微服务架构的Docker虚拟技术深入探究
庐山真面目之十四微服务架构的Docker虚拟技术深入探究 一.我的开场白 曾几何时,分布式的发展也影响了后来的微服务架构的实现方式.到了现在,只要涉及到互联网技术领域,就会设计一个概念,那就是微服务. ...
- [LeetCode]2. 两数相加(难度:中等)
题目: 给你两个非空的链表,表示两个非负的整数.它们每位数字都是按照逆序的方式存储的,并且每个节点只能存储一位数字.请你将两个数相加,并以相同形式返回一个表示和的链表.你可以假设除了数字0之外,这两个 ...
- PAT (Advanced Level) Practice 1001 A+B Format (20 分) 凌宸1642
PAT (Advanced Level) Practice 1001 A+B Format (20 分) 凌宸1642 题目描述: Calculate a+b and output the sum i ...
- JS基础学习第三天
条件分支语句switch语句语法: 1234567891011121314 switch(条件表达式){ case 表达式: 语句... break; case 表达式: 语句... break; c ...
- lms框架分布式事务使用简介
lms框架的分布式事务解决方案采用的TCC事务模型.在开发过程中参考和借鉴了hmily.使用AOP的编程思想,在rpc通信过程中通过拦截器的方式对全局事务或是分支事务进行管理和协调. 本文通过lms. ...
- c++ 实现向量去重操作
去重的时候要考虑线性表或链表是否是有序 1.1.无序线性表 对于向量[1,5,3,7,2,4,7,3], 从头开始扫描vector内的元素, 对于表中r处的元素a[r], 检查数组0至r-1区间内是否 ...
- 理解和解决Java并发修改异常:ConcurrentModificationException
參考文獻:https://www.jianshu.com/p/f3f6b12330c1 文獻来源:简书 关键字: Java Exception遇到异常信息Exception in thread &qu ...
- Java后端进阶-JVM参数调优
package com.study.performance; import org.springframework.boot.SpringApplication; import org.springf ...
- shell脚本 5 sed和awk
文本处理三剑客 在 Shell 下使用这些正则表达式处理文本最多的命令有下面几个工具: 命令 描述 grep 默认不支持扩展表达式,加-E 选项开启 ERE.如果不加-E 使用花括号要加转义符\{\} ...