Codeforces 题面传送门 & 洛谷题面传送门

事实证明,有的难度评分不算很高、涉及的知识点不算很难的题目也能出得非常神仙

首先考虑如何暴力求答案。注意到一个文本串 \(T\) 在 \(s_k\) 中出现的位置,有两种可能,要么跨过中间的 \(t_k\),要么没跨过,前者等价于文本串在 \(s_{k-1}[|s_{k-1}|-|T|+2,|s_{k-1}|]+t_k+s_{k-1}[1,|T|-1]\) 中出现的次数。由于其长度为 \(\mathcal O(|T|)\),因此可以在 KMP 或哈希在 \(\mathcal O(|T|)\) 时间内求出。要么没有跨过中间的 \(t_k\),而这样的出现位置要么在 \(s_0\) 中出现过,要么在某个 \(s_{k'}(k'<k)\) 中作为跨过中间的 \(t_{k'}\) 的字符串出现。因此

\[res=\text{occ}(t_0,T)·2^k+\sum\limits_{i=1}^k\text{occ}(s_{i}[|s_{i}|-|T|+2,|s_{i}|]+t_i+s_{i}[1,|T|-1],T)·2^{k-i}
\]

其中 \(\text{occ}(s,t)\) 表示 \(t\) 在 \(s\) 中的出现次数。

考虑优化。我们找到最小的 \(k'\),满足 \(|t_{k'}|>|T|\),如果不存在这样的 \(k'\) 或 \(k'>k\) 则直接输出 \(\text{occ}(t_k,T)\) 即可。否则我们先令答案加上 \(\text{occ}(t_{k'},T)·2^{k-k'}\),而对于 \(i>k',j>k'\),由于 \(|T|<|s_i|,|T|<|s_j|\),如果 \(t_i=t_j\),那么显然有 \(s_{i}[|s_{i}|-|T|+2,|s_{i}|]+t_i+s_{i}[1,|T|-1]=s_{j}[|s_{j}|-|T|+2,|s_{j}|]+t_j+s_{j}[1,|T|-1]\),我们考虑枚举所有 \(t_j=c\),计算 \(\text{occ}(s_{i}[|s_{i-1}|-|T|+2,|s_{i}|]+c+s_{i}[1,|T|-1],T)\),然后前缀和求出 \(\sum\limits_{i=k'+1}^k2^{-i}[t_i=c]\),这样即可在 \(|T|·|\Sigma|\) 的时间内算出答案。

时间复杂度 \(\Theta((\sum|T|+n)·|\Sigma|)\)

const int MAXN=1e5;
const int MAXM=100;
const int MAXL=1e6;
const int BS=191;
const int MOD=1e9+7;
const int INV2=5e8+4;
const int HMOD=1004535809;
int n,qu,occ[MAXN+5][28],pw[MAXN+5],ipw[MAXN+5],pw_hs[MAXL+5];
char s[MAXM+5],t[MAXN+5];string str[22];
int getocc(string s,string t){
static int hss[MAXL*2+5];int hst=0,res=0;
for(int i=1;i<=s.size();i++) hss[i]=(1ll*hss[i-1]*BS+s[i-1])%HMOD;
for(int i=0;i<t.size();i++) hst=(1ll*BS*hst+t[i])%HMOD;
for(int i=0;i+t.size()<=s.size();i++)
if((hss[i+t.size()]-1ll*pw_hs[t.size()]*hss[i]%HMOD+HMOD)%HMOD==hst)
res++;
return res;
}
int main(){
scanf("%d%d%s%s",&n,&qu,s+1,t+1);
for(int i=(pw[0]=ipw[0]=1);i<=MAXN;i++){
ipw[i]=1ll*ipw[i-1]*INV2%MOD;
pw[i]=(pw[i-1]<<1)%MOD;
}
for(int i=(pw_hs[0]=1);i<=MAXL;i++) pw_hs[i]=1ll*pw_hs[i-1]*BS%HMOD;
for(int i=1;i<=n;i++){
for(int j=0;j<26;j++) occ[i][j]=occ[i-1][j];
occ[i][t[i]-'a']=(occ[i][t[i]-'a']+ipw[i])%MOD;
}
int len=strlen(s+1),cur=0;for(int i=1;i<=len;i++) str[0].pb(s[i]);
while(str[cur].size()<=MAXL&&cur<n){
cur++;
for(int i=0;i<str[cur-1].size();i++) str[cur].pb(str[cur-1][i]);
str[cur].pb(t[cur]);
for(int i=0;i<str[cur-1].size();i++) str[cur].pb(str[cur-1][i]);
}
while(qu--){
int k;string p;static char buf[MAXL+5];
scanf("%d%s",&k,buf+1);int L=strlen(buf+1);
for(int i=1;i<=L;i++) p.pb(buf[i]);
int mx=0;while(str[mx].size()<=L) mx++;
if(k<=mx){printf("%d\n",getocc(str[k],p));continue;}
int res=1ll*getocc(str[mx],p)*pw[k-mx]%MOD;
for(int i=0;i<26;i++){
string nw_s;
for(int j=str[mx].size()-L+1;j<str[mx].size();j++) nw_s.pb(str[mx][j]);
nw_s.pb(i+'a');
for(int j=0;j<L-1;j++) nw_s.pb(str[mx][j]);
int msk=occ[k][i],cnt=getocc(nw_s,p);
// printf("%d %d\n",msk,cnt);
// cout<<nw_s<<" "<<p<<endl;
for(int j=1;j<=mx;j++) if(t[j]-'a'==i) msk=(msk-ipw[j]+MOD)%MOD;
res=(res+1ll*msk*pw[k]%MOD*cnt)%MOD;
} printf("%d\n",res);
}
return 0;
}

Codeforces 1466G - Song of the Sirens(哈希)的更多相关文章

  1. Codeforces Gym 100338B Spam Filter 字符串哈希+贝叶斯公式

    原题链接:http://codeforces.com/gym/100338/attachments/download/2136/20062007-winter-petrozavodsk-camp-an ...

  2. 【CodeForces】961 F. k-substrings 字符串哈希+二分

    [题目]F. k-substrings [题意]给定长度为n的串S,对于S的每个k-子串$s_ks_{k+1}...s_{n-k+1},k\in[1,\left \lceil \frac{n}{2} ...

  3. Codeforces 542D Superhero's Job 数论 哈希表 搜索

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF542D.html 题目传送门 - CF542D 题目传送门 - 51Nod1477 题意 定义公式 $J(x ...

  4. Codeforces Round #543 (Div. 2) F dp + 二分 + 字符串哈希

    https://codeforces.com/contest/1121/problem/F 题意 给你一个有n(<=5000)个字符的串,有两种压缩字符的方法: 1. 压缩单一字符,代价为a 2 ...

  5. Codeforces 1182D Complete Mirror [树哈希]

    Codeforces 中考考完之后第一个AC,纪念一下qwq 思路 简单理解一下题之后就可以发现其实就是要求一个点,使得把它提为根之后整棵树显得非常对称. 很容易想到树哈希来判结构是否相同,而且由于只 ...

  6. Codeforces 356E - Xenia and String Problem(哈希)

    Codeforces 题面传送门 & 洛谷题面传送门 首先显然一个 gray 串的长度只可能是 \(2^k-1\),其中 \(k\in\mathbb{Z}\). 考虑将一个字符改成另外一个字符 ...

  7. Codeforces 961F - k-substrings(二分+哈希)

    Codeforces 题面传送门 & 洛谷题面传送门 介绍一种奇怪的 \(\Theta(n\log n)\) 的奇怪做法. 注意到这个"border 的长度必须是奇数"的条 ...

  8. Codeforces 1340F - Nastya and CBS(分块+哈希)

    Codeforces 题面传送门 & 洛谷题面传送门 首先看到这样的数据范围我们可以考虑分块,具体来说,对于每一块我们记录其中的括号是否能完全消掉,以及对其进行括号相消之后的括号序列(显然是一 ...

  9. Codeforces 109D String Transformation 字符串 哈希 KMP

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF109D.html 题目传送门 - CF109D 题意 给定两个字符串 $a,b$ ,求一组 $i,j$ 使得 ...

随机推荐

  1. 初学python-day11 函数3

    函数 1. global关键字 修改全局变量,声明函数内外使用同一个变量 示例: 1 name = 'xiaoming' 2 3 def test(): 4 global name 5 name = ...

  2. vue3双向数据绑定原理_demo

    <!DOCTYPE html> <head> <meta charset="UTF-8" /> <meta name="view ...

  3. 【UE4】类的继承层级关系

  4. 【c++ Prime 学习笔记】第19章 特殊工具与技术

    某些程序对内存分配有特殊要求,不能直接使用标准内存管理机制 重载new和delete算符可控制内存分配的过程 19.1.1 重载new和delete 说法"重载new和delete" ...

  5. Sequence Model-week3编程题2-Trigger Word Detection

    1. Trigger Word Detection 我们的触发词将是 "Activate.".每当它听到你说 "Activate.",它就会发出 "c ...

  6. Noip模拟81 2021.10.20

    T1 语言 比较简单的题,然后就瞎写了,所以考场上就我一个写了线段树的,所以我的常数.... 所以就枚举动词的位置,找前面后面有没有出现$4$即可 1 #include<bits/stdc++. ...

  7. 大牛针对零基础入门c语言详解指针(超详细)

    C语言指针说难不难但是说容易又是最容易出错的地方,因此不管是你要做什么只要用到C指针你就跳不过,今天咱们就以 十九个例子来给大家简单的分析一下指针的应用,最后会有C语言视频资料提供给大家更加深入的参考 ...

  8. 攻防世界 杂项15.János-the-Ripper

    下载附件并解压,我用的是WinHex打开,发现是PK开头,并且文件中包含一个flag.txt文件,应该就是我们所需要的flag. 把下载的附件改后缀为.zip,确实有我们需要的flag,打开后需要密码 ...

  9. 初试Docker-打包构建镜像

    在 docker 中,镜像的结构是以层次划分的,也就是可以在每一层上添加自己的修改,变成新的镜像. docker 两种打包方式如下: commit build docker commit 注意: do ...

  10. springmvc学习笔记(全)

    SpringMVC简介 什么是MVC MVC是一种软件架构的思想,将软件按照模型.视图.控制器来划分 M: Model:模型层,指工程中的JavaBean,作用是处理数据.JavaBean分为两类: ...