洛谷 P5644 - [PKUWC2018]猎人杀(分治+NTT)
很久之前(2020 年)就听说过这题了,这么经典的题怎么能只听说而亲自做一遍呢
首先注意到每次开枪打死一个猎人之后,打死其他猎人概率的分母就会发生变化,这将使我们维护起来非常棘手,因此我们考虑做一个转化:每次随便从全集中选出一个猎人(不管死的活的),如果它是活的就将它射死。假设现在死了的猎人的 \(w_i\) 值之和为 \(T\),所有猎人的 \(w_i\) 值之和为 \(U\),那么精通无穷级数的同学应该不难推出,对于某个还活着的猎人 \(j\),射到的第一个活着的猎人是 \(j\) 的概率就是 \(\sum\limits_{i=0}^{\infty}(\dfrac{T}{U})^i·\dfrac{w_j}{U}=\dfrac{U}{U-T}·\dfrac{w_j}{U}=\dfrac{w_j}{U-T}\),刚好就是题目中的式子。
这样一来我们就大可不必考虑“每一枪射到的猎人必须是活的”这个限制了,接下来考虑原问题。考虑容斥(没想到*1),我们考虑钦定一个集合 \(S(1\notin S)\) 并令 \(S\) 中的猎人必须在 \(1\) 之后死,我们记这样的概率为 \(p(S)\),那么答案显然就是 \(\sum\limits_{1\notin S}p(S)(-1)^{|S|}\)。考虑这个 \(p(S)\) 是个什么东西,按照上面的转化,\(S\) 中的猎人在 \(1\) 之后死即意味着在打死 \(1\) 之前选择的猎人都不在 \(S\) 中,那么我们可以枚举打死 \(1\) 之前开了多少枪,设这个数是 \(c\),方便起见我们假设 \(X=\sum\limits_{x\in S}w_x\),那么可列出方程 \(p(S)=\sum\limits_{c=0}^{\infty}(\dfrac{U-X-w_1}{U})^c·\dfrac{w_1}{U}=\dfrac{U}{X+w_1}·\dfrac{w_1}{U}=\dfrac{w_1}{X+w_1}\)。
琢磨清楚 \(p(S)\) 是个什么东西之后,最后一步就是计算上面那个式子了。暴力枚举 \(S\) 显然 T 飞,想也别想了。不过一个 observation 是 \(p(S)\) 的表达式只与 \(S\) 中所有元素的 \(w\) 值之和 \(X\) 有关,因此我们考虑枚举 \(X\),即 \(ans=\sum\limits_{X}\dfrac{w_1}{X+w_1}\sum\limits_{S}(-1)^{|S|}[\sum\limits_{x\in S}w_x=X]\),也就是说如果我们能求出所有满足 \(\sum\limits_{x\in S}w_x=X\) 的 \((-1)^{|S|}\) 之和那这题就搞定了。这东西怎么求呢?这东西看起来好像有点眼熟,\(w_x\) 之和等于 \(X\) 可以看作……系数之和等于 \(X\),对!生成函数(想不到 *2,u1s1 中考结束后 wtm 简直像个 sb)。我们令 \(F(x)=\prod\limits_{i=2}^n(1-x^{w_i})\),那么这东西就是 \([x^{X}]F(x)\),由于 \(\sum\limits_{i=1}^nw_i\le 10^5\),因此可以分治+NTT(为什么是“分治+NTT”而不是“分治 NTT”呢?因为这里的分治不是 cdq 分治)求出 \(F(x)\),时间复杂度 \(n\log^2n\)
const int MAXN=1e5;
const int MAXP=1<<18;
const int pr=3;
const int MOD=998244353;
const int ipr=(MOD+1)/3;
int n,a[MAXN+5];
int qpow(int x,int e){
int ret=1;
for(;e;e>>=1,x=1ll*x*x%MOD) if(e&1) ret=1ll*ret*x%MOD;
return ret;
}
int rev[MAXP+5];
void NTT(vector<int> &a,int len,int type){
int lg=31-__builtin_clz(len);
for(int i=0;i<len;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<lg-1);
for(int i=0;i<len;i++) if(i<rev[i]) swap(a[i],a[rev[i]]);
for(int i=2;i<=len;i<<=1){
int W=qpow((type<0)?ipr:pr,(MOD-1)/i);
for(int j=0;j<len;j+=i){
for(int k=0,w=1;k<(i>>1);k++,w=1ll*w*W%MOD){
int X=a[j+k],Y=1ll*a[(i>>1)+j+k]*w%MOD;
a[j+k]=(X+Y)%MOD;a[(i>>1)+j+k]=(X-Y+MOD)%MOD;
}
}
}
if(!~type){
int ivn=qpow(len,MOD-2);
for(int i=0;i<len;i++) a[i]=1ll*a[i]*ivn%MOD;
}
}
vector<int> conv(vector<int> a,vector<int> b,int len){
int LEN=1;while(LEN<a.size()+b.size()) LEN<<=1;
a.resize(LEN,0);b.resize(LEN,0);NTT(a,LEN,1);NTT(b,LEN,1);
for(int i=0;i<LEN;i++) a[i]=1ll*a[i]*b[i]%MOD;
NTT(a,LEN,-1);while(a.size()>len) a.pop_back();return a;
}
vector<int> solve(int l,int r){
if(l==r){
vector<int> res(a[l]+1,0);
res[a[l]]=MOD-(res[0]=1);
return res;
} int mid=l+r>>1;
vector<int> L=solve(l,mid);
vector<int> R=solve(mid+1,r);
return conv(L,R,L.size()+R.size()-1);
}
int main(){
scanf("%d",&n);if(n==1) return puts("1")&0;int sum=0;
for(int i=1;i<=n;i++) scanf("%d",&a[i]),sum+=!!(i^1)*a[i];
vector<int> res=solve(2,n);int ans=0;
for(int i=0;i<=sum;i++) ans=(ans+1ll*a[1]*qpow(a[1]+i,MOD-2)%MOD*res[i])%MOD;
printf("%d\n",ans);
return 0;
}
洛谷 P5644 - [PKUWC2018]猎人杀(分治+NTT)的更多相关文章
- 【洛谷5644】[PKUWC2018] 猎人杀(容斥+生成函数+分治NTT)
点此看题面 大致题意: 有\(n\)个人相互开枪,每个人有一个仇恨度\(a_i\),每个人死后会开枪再打死另一个还活着的人,且第一枪由你打响.设当前剩余人仇恨度总和为\(k\),则每个人被打中的概率为 ...
- LOJ2541 PKUWC2018猎人杀(概率期望+容斥原理+生成函数+分治NTT)
考虑容斥,枚举一个子集S在1号猎人之后死.显然这个概率是w1/(Σwi+w1) (i∈S).于是我们统计出各种子集和的系数即可,造出一堆形如(-xwi+1)的生成函数,分治NTT卷起来就可以了. #i ...
- P5644-[PKUWC2018]猎人杀【NTT,分治】
正题 题目链接:https://www.luogu.com.cn/problem/P5644 题目大意 \(n\)个人,每个人被选中的权重是\(a_i\).每次按照权重选择一个没有死掉的人杀死,求第\ ...
- 洛谷 4721 【模板】分治 FFT——分治FFT / 多项式求逆
题目:https://www.luogu.org/problemnew/show/P4721 分治FFT:https://www.cnblogs.com/bztMinamoto/p/9749557.h ...
- 洛谷SP22343 NORMA2 - Norma(分治,前缀和)
洛谷题目传送门 这题推式子恶心..... 考虑分治,每次统计跨过\(mid\)的所有区间的答案和.\(i\)从\(mid-1\)到\(l\)枚举,统计以\(i\)为左端点的所有区间. 我们先维护好\( ...
- Poj1741/洛谷P4718 Tree(点分治)
题面 有多组数据:Poj 无多组数据:洛谷 题解 点分治板子题,\(calc\)的时候搞一个\(two\ pointers\)扫一下统计答案就行了. #include <cmath> #i ...
- 洛谷P3810 陌上花开(CDQ分治)
洛谷P3810 陌上花开 传送门 题解: CDQ分治模板题. 一维排序,二维归并,三维树状数组. 核心思想是分治,即计算左边区间对右边区间的影响. 代码如下: #include <bits/st ...
- 洛谷P4705 玩游戏 [生成函数,NTT]
传送门 这是两个月之前写的题,但没写博客.现在回过头来看一下发现又不会了-- 还是要写博客加深记忆. 思路 显然期望可以算出总数再乘上\((nm)^{-1}\). 那么有 \[ \begin{alig ...
- 题解-PKUWC2018 猎人杀
Problem loj2541 题意概要:给定 \(n\) 个人的倒霉度 \(\{w_i\}\),每回合会有一个人死亡,每个人这回合死亡的概率为 自己的倒霉度/目前所有存活玩家的倒霉度之和,求第 \( ...
随机推荐
- Java:线程池
Java:线程池 本笔记是根据bilibili上 尚硅谷 的课程 Java大厂面试题第二季 而做的笔记 获取多线程的方法: 实现 Runnable 接口 实现 Callable 接口 实例化 Thre ...
- 零基础入门必备的Linux命令和C语言基础
文件和目录(底部有视频资料) cd /home 进入 '/ home' 目录' cd - 返回上一级目录 cd -/- 返回上两级目录 cd 进入个人的主目录 cd ~user1 进入个人的主目录 c ...
- c++继承关系中成员函数的重载、重写、重定义之间的区别
1.Override.Overload.Redefine Overload 重载只能发生在类内部,不能发生在子类和父类的继承中.具体来说,如果子类中有父类同名.同返回值类型,但是不同参数列表,这两个在 ...
- git commit--fatal: unable to auto-detect email address
git commit的时候报错 *** Please tell me who you are. Run git config --global user.email "you@example ...
- linux中的分号 && ||
几个符号的用法 ; 顺序地独立执行各条命令, 彼此之间不关心是否失败, 所有命令都会执行. && 顺序执行各条命令, 只有当前一个执行成功时候, 才执行后面的. & 放在启动参 ...
- 第01课 OpenGL窗口(1)
教程的这一节在2000年一月彻底重写了一遍.将会教您如何设置一个 OpenGL窗口.它可以只是一个窗口或是全屏幕的.可以任意 大小.任意色彩深度.此处的代码很稳定且很强大,您可以在您所有的OpenGL ...
- Mybatis的分页插件com.github.pagehelper
1. 需要引入PageHelper的jar包 如果没有使用maven,那直接把jar包导入到lib文件夹下即可,这个PageHelper插件在github上有开源, 地址为:https://githu ...
- spark structured-streaming 最全的使用总结
一.spark structured-streaming 介绍 我们都知道spark streaming 在v2.4.5 之后 就进入了维护阶段,不再有新的大版本出现,而且 spark strea ...
- Qt5 C++ GUI界面 开发环境配置 详细教程
本博客已暂停更新,需要请转新博客http://www.whbwiki.com/333.html Qt 下载 Qt 体积很大,有 1GB~3GB,官方下载通道非常慢,相信很多读者会崩溃,所以建议大家使用 ...
- SpringBoot 居然有 44 种应用启动器
啥是应用启动器?SpringBoot集成了spring的很多模块,比如tomcat.redis等等.你用SpringBoot搭建项目,只需要在pom.xml引入相关的依赖,和在配置文件中简单的配置就可 ...