洛谷题面传送门

A 了这道题+发这篇题解,就当过了这个七夕节吧

奇怪的过节方式又增加了

首先看到此题第一眼我们可以想到二项式反演,不过这个 \(T\) 组数据加上 \(5\times 10^6\) 的数据范围肯定是反演不动的,因此考虑怎样不反演。

我们很显然可以将求解这个问题划分成两部分:选出 \(k\)​ 对相邻的情侣并将它们的位置安排好+排列好剩下 \(n-k\)​ 对情侣。两部分显然是独立的,因此分别考虑。第一部分是是比较容易的,选出 \(k\)​ 对情侣方案数 \(\dbinom{n}{k}\)​,选出 \(k\)​ 排位置方案数 \(\dbinom{n}{k}\)​,将这 \(k\)​ 对与 \(k\)​ 排座位对应方案数 \(k!\)​,将 \(k\)​ 对情侣随意调换位置 \(2^k\)​,因此第一部分方案数就是 \(\dbinom{n}{k}^2k!2^k\)​。第二部分显然可以等效于求安排好 \(n-k\)​ 对情侣的方案数,假设这东西为 \(f_{n-k}\)​,显然这东西是要预处理的,考虑怎么预处理 \(f_n\)​。注意到这东西跟错排数长得很像但又不完全一致,因此考虑错排数的套路,我们枚举第一排是哪两个人坐在一起的,那么方案数为 \(2n·(2n-2)\)​,第二个地方要减 \(2\)​ 因为一个人不能和自己的情侣坐在一起,那么考虑这两个人的 boy/girlfriend 是否坐在一起,如果它们坐在一起那不错,这两对 couple 就消失了,剩余部分就是 \(f_{n-2}\)​,不过安排好第一排这两个人的 boy/girlfriend 还需乘上个 \(2(n-1)\)​,因为要选择一排给他们坐,他们的位置还可以交换,因此需乘个 \(2\)​。如果它们不坐一起,那么我们就把这东西当作一个限制条件,强制令它们贴贴,形成一对新的 couple,这样问题就规约为 \(f_{n-1}\)​,因此我们得到了递推式 \(f_n=2n·(2n-2)(f_{n-1}+2(n-1)f_{n-2})\),线性求一下即可。

时间复杂度 \(\mathcal O(n+T)\)

祝大家七夕节快乐

const int MAXN=5e6;
const int MOD=998244353;
int fac[MAXN+5],ifac[MAXN+5],pw2[MAXN+5],f[MAXN+5];
void init_fac(int n){
for(int i=(fac[0]=ifac[0]=ifac[1]=pw2[0]=1)+1;i<=n;i++) ifac[i]=1ll*ifac[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;i++) ifac[i]=1ll*ifac[i]*ifac[i-1]%MOD,fac[i]=1ll*fac[i-1]*i%MOD,pw2[i]=(pw2[i-1]<<1)%MOD;
f[0]=1;for(int i=2;i<=n;i++) f[i]=4ll*i*(i-1)%MOD*(f[i-1]+2ll*(i-1)*f[i-2]%MOD)%MOD;
}
int binom(int x,int y){
if(x<0||y<0||x<y) return 0;
return 1ll*fac[x]*ifac[y]%MOD*ifac[x-y]%MOD;
}
int main(){
init_fac(MAXN);int qu;scanf("%d",&qu);
while(qu--){
int n,k;scanf("%d%d",&n,&k);
printf("%d\n",1ll*binom(n,k)*binom(n,k)%MOD*pw2[k]%MOD*fac[k]%MOD*f[n-k]%MOD);
}
return 0;
}

洛谷 P4931 - [MtOI2018]情侣?给我烧了!(加强版)(组合数学)的更多相关文章

  1. 【洛谷P4931】 情侣?给我烧了!(加强版)组合计数

    挺有意思的一道题... code: #include <bits/stdc++.h> using namespace std; #define N 5000006 #define mod ...

  2. 洛谷P3796 【模板】AC自动机(加强版)(AC自动机)

    洛谷题目传送门 先膜一发yyb巨佬 orz 想学ac自动机的话,推荐一下yyb巨佬的博客,本蒟蒻也是从那里开始学的. 思路分析 裸的AC自动机,这里就不讲了.主要是这题太卡时了,尽管时限放的很大了.. ...

  3. 洛谷P2812校园网络【Network of Schools加强版】

    题目背景 浙江省的几所\(OI\)强校的神犇发明了一种人工智能,可以\(AC\)任何题目,所以他们决定建立一个网络来共享这个软件.但是由于他们脑力劳动过多导致全身无力身体被\(♂\)掏\(♂\)空,他 ...

  4. 洛谷P4931 情侣!给我!烧了! 数论

    正解:数论 解题报告: 传送门 这题,想不到就很痛苦,但是理解了之后还是觉得也没有很难,,,毕竟实现不难QAQ 首先关于前面k对情侣的很简单,就是C(n,k)*C(n,k)*A(k,k)*2k 随便解 ...

  5. 洛谷P4931 情侣?给我烧了!(加强版)(组合数学)

    题面 传送门 题解 首先我们算出刚好有\(k\)对情侣的方案数 从\(n\)对情侣中选出\(k\)对,方案数为\({n\choose k}\) 从\(n\)排座位中选出\(k\)排,方案数为\({n\ ...

  6. 题解-洛谷4921&4931 情侣?给我烧了!(加不加强无所谓版)

    Problem 简单版 & 加强版 题目概要(其实题面写得很清楚,这里搬运一下): \(n\) 对情侣排座位,恰有 \(n\) 排座位,每排 \(2\) 个座位,在一个就座方案中所有人会将将座 ...

  7. 洛谷P3796 - 【模板】AC自动机(加强版)

    原题链接 Description 模板题啦~ Code //[模板]AC自动机(加强版) #include <cstdio> #include <cstring> int co ...

  8. cjoj P1435 - 【模板题 USACO】AC自动机 && 洛谷 P3796 【模板】AC自动机(加强版)

    又打了一遍AC自动稽. 海星. 好像是第一次打trie图,很久以前就听闻这个思想了.OrzYYB~ // It is made by XZZ #include<cstdio> #inclu ...

  9. 【洛谷】NOIP提高组模拟赛Day1【组合数学】【贪心+背包】【网络流判断是否满流以及流量方案】

    U41568 Agent1 题目背景 2018年11月17日,中国香港将会迎来一场XM大战,是世界各地的ENLIGHTENED与RESISTANCE开战的地点,某地 的ENLIGHTENED总部也想派 ...

随机推荐

  1. 分布式全局ID与分布式事务

    1. 概述 老话说的好:人不可貌相,海水不可斗量.以貌取人是非常不好的,我们要平等的对待每一个人. 言归正传,今天我们来聊一下分布式全局 ID 与分布式事务. 2. 分布式全局ID 2.1 分布式数据 ...

  2. SharkCTF2021 pwn“初见”1

    (无内鬼 今日不想学了 水一篇) nc nc nc easyoverflow Intoverflow

  3. Ruby on Rails 单元测试

    Ruby on Rails 单元测试 为什么要写测试文件? 软件开发中,一个重要的环节就是编写测试文件,对代码进行单元测试,确保程序各部分功能执行正确.但是,这一环节很容易被我们轻视,认为进行单元测试 ...

  4. JavaAgent型内存马基础

    Java Instrumentation ​ java Instrumentation指的是可以用独立于应用程序之外的代理(agent)程序来监测和协助运行在JVM上的应用程序.这种监测和协助包括但不 ...

  5. Noip模拟50 2021.9.10

    已经好长时间没有考试不挂分的良好体验了... T1 第零题 开场数据结构,真爽 对于这道题首先要理解对于一条链从上向下和从下向上走复活次数相等 (这可能需要晚上躺在被窝里面脑摸几种情况的样例) 然后就 ...

  6. 字符串与模式匹配算法(四):BM算法

    一.BM算法介绍 BM算法(Boyer-Moore算法)是罗伯特·波义尔(Robert Boyer)和杰·摩尔(J·Moore)在1977年共同提出的.与KMP算法不同的是,BM算法是模式串P由左向右 ...

  7. JAVA笔记7__接口应用/Object类/简单工厂模式/静态代理模式/适配器模式

    /** * 接口应用 */ public class Main { public static void main(String[] args) { Person p = new Person(&qu ...

  8. CSS 盒子的边距塌陷

    tip:为能更直观地学习,本文章已省略部分 css 样式代码. 我相信下面的情形大家在日常工作中常常碰到:在制作静态页面中,为了页面整体的协调与美观,我们想让子盒子 image-div 的上边沿距离父 ...

  9. S 锁与 X 锁的爱恨情仇《死磕MySQL系列 四》

    系列文章 一.原来一条select语句在MySQL是这样执行的<死磕MySQL系列 一> 二.一生挚友redo log.binlog<死磕MySQL系列 二> 三.MySQL强 ...

  10. Typora 快捷方式

    1.标题编写 方法一:几个#号 代表几级标题  (共6级) 方法二:ctrl +1 .2.3.4.5.6 2.如何编写子标题 第一种:无序子标题(无序列表) *号  +  空格书写标题文本   (输入 ...