其实也不是多难的知识点吧……学了一个中午+半个下午就把它学会了(做过那道 jxd 作业 CF571D 的应该比较好理解)

Kruskal 重构树大概就是在正常 Kruskal 的时候,对于两个需要连边的点 \(u,v\) 不直接连边,而是新增一个虚拟节点 \(T\),权值为 \(u,v\) 间的边权 \(w\),并连边 \(T\to u,T\to v\)。

下图可以较为清楚地展示 Kruskal 重构树的过程,正常的 Kruskal 我们是这样连边的:

而 Kruskal 重构树我们是这样连边的:

显然这样建出来的图是一棵树,而这棵树有以下性质:

  1. 由于我们每个新建的点都恰好连出的两条边,因此这棵树是一个二叉树
  2. 由于我们是按照边权从小到大排序来建树的,因此这棵树的权值可以看作一个大根堆(假设叶子节点的权值为 \(0\) 或 \(-\infty\))
  3. 对于两个点 \(u,v\),它们之间路径最大值的最小值就是 Kruskal 重构树上它们 LCA 的权值,这个用普通的 Kruskal 建出最小生成树再查询它们之间路径权值最大值的方法也可说明
  4. 对于一个点 \(u\),记 \(v\) 为离 \(u\) 最远的满足 \(v\) 的权值 \(\le w\) 的 \(u\) 的祖先,那么所有 \(u\) 经过权值 \(\le w\) 的边能够到达的点的集合恰好为 \(v\) 子树内所有叶子节点,这个性质相当重要,因为它可以将我们陌生的图的连通性问题转化为熟悉的子树问题,而这恰恰是可以通过 DFS 序套上某些数据结构维护的。

Kruskal 重构树的知识点就这么多,实现起来不算太难,只不过有以下需要注意的地方:

  1. Kruskal 重构树点数最多会达到 \(2n-1\),因此要开两倍空间
  2. 如果题目图不连通,那么最后建出的 Kruskal 重构树也不连通,也就是说最后得到的是一个二叉森林,此时就要额外补上一个节点 \(R\),权值为 \(\infty\),并将 \(R\) 与森林中所有连通块的根节点之间连边(当然这样得到的树就不是二叉树了)

代码想想还是贴一下罢(当然这是题目保证连通的情况的代码,如果题目没保证连通那后面还要加上两三句话,由于过于简单就不贴了):

int hd[MAXN*2+5],nxt[MAXN*2+5],to[MAXN*2+5],ec=0;
void adde(int u,int v){to[++ec]=v;nxt[ec]=hd[u];hd[u]=ec;}
int f[MAXN*2+5],nc;
int main(){
nc=n;for(int i=1;i<=n;i++) f[i]=i;
for(int i=1,u,v;i<=m;i++){
u=find(u);v=find(v);if(u==v) continue;++nc;
f[u]=f[v]=f[nc]=nc;adde(nc,u);adde(nc,v);val[nc]=i;
}
}

总之,Kruskal 重构树无法解决权值之和最小的问题,它只能解决路径上权值最大值最小最小值最大可达性问题,因此看到类似于”只经过权值 \(\le w\) 的边“或者”能够到达的点当中“等字眼就可以联想到 Kruskal 重构树。

例题:

1. AT1998 [AGC002D] Stamp Rally

差点不会做,身败名裂

首先以边的编号为权值建出 Kruskal 重构树,对每个询问考虑二分,二分答案 \(mid\),那么显然可以倍增找出 \(x\) 可以到达的点和 \(y\) 可以到达的点,显然是两个子树 \(u\) 和 \(v\) 的并,而这个并的大小可用通过判断 \(u,v\) 是否存在祖先关系求出,如果存在就是祖先子树大小,否则就是 \(siz_u+siz_v\),将它与 \(z\) 比较即可。

时间复杂度 \(n\log^2n\),可能有 \(n\log n\) 的做法,不过估计 Kruskal 重构树是做不了了(

u1s1 倍增是真的喜欢和 Kruskal 重构树贴贴(大雾

2. P4197 Peaks

还是建出 Kruskal 重构树,倍增找出对应子树 \(u\),然后建立主席树,在主席树上离散化+二分找第 \(k\) 大即可。

时间复杂度 \(n\log n\)。

好套路啊……

3. CF1416D Graph and Queries

考虑离线,对每条边记它的边权为它被删除的时间(如果没被删除则为 \(q+1\)),然后建 Kruskal 重构树(这次要建个大根堆,因为可以访问的边的边权要大于某个数),然后对每个询问还是倍增找出它可以到达的点,然后线段树+DFS 序找出子树内权值最大的点赋为 \(0\) 即可。

时间复杂度 \(n\log n\)。

4. P4768 [NOI2018] 归程

首先最优方案肯定是开一段距离的车然后走一段距离,而由于终点都是 \(1\) 且图为无向图,因此可以 dijkstra(关 于 S P F A,它 死 了,死 于 这 道 题 的 手 中)求出 \(1\) 到每个点的最短距离 \(dis_i\),那么每个询问的答案就是 \(v\) 能到达的点中 \(dis\) 的最小值,这个显然是可以 Kruskal 重构树解决的,而且甚至不用什么数据结构(不愧是你 NOI 签到题),直接记录一个子树最小值即可。

时间复杂度 \(Tn\log n\)。

5. P4899 [IOI2018] werewolf 狼人

我竟然能独立想出来近几年 IOI 的题,incredible!

首先题目等价于能否找到一个编号在 \([L_i,R_i]\) 之间的点 \(t\),满足存在 \(U_i\to t\),只经过编号 \(\ge L_i\) 的点的路径,也存在 \(t\to V_i\),只经过编号 \(\le R_i\) 的路径。

这东西显然是可以 Kruskal 重构树的,比较棘手的一点是此题涉及点权,而不是边权。不过事实上转化非常容易,显然对于一条边 \((u,v)\) 而言,只有 \(u,v\) 的权值都符合要求,\((u,v)\) 才能通过,那么我们就可以把 \((u,v)\) 的权值设为 \(\min(w_u,w_v)\)(如果要求经过的边权值 \(\ge v\))或者 \(\max(w_u,w_v)\)(如果要求经过的边权值 \(\le v\)),这样就可以 Kruskal 重构树了。

于是现在题目转化为,对于有两棵树,\(q\) 组询问,每组询问给出第一棵树上的点 \(u\) 和第二棵树上的点 \(v\),判断是否存在一个叶子节点在 \(u,v\) 的子树中,这个可以使用 DFS 序转化为区间问题,然后就可以主席树维护了,有点类似于这个题,时间复杂度 \(n\log n\)

Kruskal 重构树小记的更多相关文章

  1. [bzoj 3732] Network (Kruskal重构树)

    kruskal重构树 Description 给你N个点的无向图 (1 <= N <= 15,000),记为:1-N. 图中有M条边 (1 <= M <= 30,000) ,第 ...

  2. 【BZOJ 3732】 Network Kruskal重构树+倍增LCA

    Kruskal重构树裸题, Sunshine互测的A题就是Kruskal重构树,我通过互测了解到了这个神奇的东西... 理解起来应该没什么难度吧,但是我的Peaks连WA,,, 省选估计要滚粗了TwT ...

  3. 【BZOJ-3545&3551】Peaks&加强版 Kruskal重构树 + 主席树 + DFS序 + 倍增

    3545: [ONTAK2010]Peaks Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1202  Solved: 321[Submit][Sta ...

  4. BZOJ 3551: [ONTAK2010]Peaks加强版 [Kruskal重构树 dfs序 主席树]

    3551: [ONTAK2010]Peaks加强版 题意:带权图,多组询问与一个点通过边权\(\le lim\)的边连通的点中点权k大值,强制在线 PoPoQQQ大爷题解传送门 说一下感受: 容易发现 ...

  5. bzoj 3551 kruskal重构树dfs序上的主席树

    强制在线 kruskal重构树,每两点间的最大边权即为其lca的点权. 倍增找,dfs序对应区间搞主席树 #include<cstdio> #include<cstring> ...

  6. kruskal重构树学习笔记

    \(kruskal\) 重构树学习笔记 前言 \(8102IONCC\) 中考到了,本蒟蒻不会,所以学一下. 前置知识 \(kruskal​\) 求最小(大)生成树,树上求 \(lca​\). 算法详 ...

  7. Kruskal重构树入门

    这个知识点好像咕咕咕了好长了..趁还没退役赶紧补一下吧.. 讲的非常简略,十分抱歉.. 前置知识 Kruskal算法 一定的数据结构基础(如主席树) Kruskal重构树 直接bb好像不是很好讲,那就 ...

  8. UOJ#407. 【IOI2018】狼人 Kruskal,kruskal重构树,主席树

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ407.html 题解 套路啊. 先按照两个节点顺序各搞一个kruskal重构树,然后问题转化成两棵krus ...

  9. LOJ.2865.[IOI2018]狼人(Kruskal重构树 主席树)

    LOJ 洛谷 这题不就是Peaks(加强版)或者归程么..这算是\(IOI2018\)撞上\(NOI2018\)的题了? \(Kruskal\)重构树(具体是所有点按从小到大/从大到小的顺序,依次加入 ...

随机推荐

  1. SharkCTF2021 bybypass&baby_phpserialize题记

    (国庆褪10天了 先水一篇) bybypass: payload:?anime_is_bae=hehellotherehoomanllotherehooman baby_phpserialize ro ...

  2. python jinja2初见

    吸取了长城杯的教训,学习python-web迫在眉睫. 正常难度的python_template_injection,由于现在没学面向对象,理解原理比较困难,所以先使用简单版复现:并附上正常版的常用p ...

  3. 【UE4 设计模式】抽象工厂模式 Abstract Factory Pattern

    概述 描述 提供一个创建一系列相关或相互依赖对象的接口,而无须指定它们具体的类:具体的工厂负责实现具体的产品实例 抽象工厂中每个工厂可以创建多种产品(如苹果公司生产iPhone.iPad): 工厂方法 ...

  4. Noip模拟19(炸裂的开始) 2021.7.18

    T1 u 差分与前缀的综合练习. 分析数据范围,只能是在修改的时候$O(1)$做到,那么只能是像打标记一样处理那个三角形 正解是建立两个二位前缀和,一个控制竖向,一个控制斜向 每次在三角的左上,右下, ...

  5. Java RMI学习与解读(二)

    Java RMI学习与解读(二) 写在前面 接上篇文章,这篇主要是跟着看下整个RMI过程中的源码并对其做简单的分析 RMI源码分析 还是先回顾下RMI流程: 创建远程对象接口(RemoteInterf ...

  6. 转:SYNOPSYS VCS Makefile文件编写与研究

    SYNOPSYS VCS Makefile文件编写与研究 这个Makefile是synopsys提供的模板,看上去非常好用,你只要按部就班提供实际项目的参数就可以了.我们来看这个文件的头部说明:mak ...

  7. hdu 1709 The Balance(母函数)

    题意: 有一个天平.有N个砝码.重量分别是A1...AN. 问重量[1..S]中有多少种重量是无法利用这个天平和这些砝码称出来的. S是N个砝码的重量总和. 思路: 对于每一个砝码来说,有三种:不放, ...

  8. Java反射判断对象实例所有属性是否为空

    https://www.jb51.net/article/201647.htm public static Boolean ObjectAllFieldsEmpty(Object obj) throw ...

  9. java读取大文件内容到Elasticsearch分析(手把手教你java处理超大csv文件)

    现在需要快算分析一个2g的csv文件: 基于掌握的知识,使用java按行读取文件,批量导入数据到es, 然后利用es强大的聚合能力分析数据,2个小时搞定! package com.example.de ...

  10. HttpClient用法--这一篇全了解(内含例子)

    HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性,它不仅使客户端发送Http请求变得容易,而且也方便开发人员测试接口(基于Http协议的),提高了开发的效率,也 ...