【题目描述】

求有多少个1到n的排列满足恰有$k$对在排列中相邻的数满足前小于后,答案对2012取模。

【输入】

一行2个正整数$n,k$。

【输出】

输出一个整数表示答案。

【样例输入】

  5  2

【样例输出】

  66

【数据范围】

  $k<n<=1000$

分析:

计数类问题,应该是个式子或者DP

考虑$k$和$n$都不大考虑DP。$f[i][j]$表示$n=i$,$k=j$时的答案。

那么考虑怎么转移,考虑将$i$插入长度为$i-1$的排列中,对答案的影响。有$f[i][j]=f[i-1][j]*(j+1)+f[i-1][j-1]*(i-j)$

$f[i-1][j]*(j+1)$表示将$i$插入后满足要求的数对没有变多,因为$i$大于$i-1$排列中的任意一个,所以将$i$插入$j$个以满足的数对中的任意一个都不会使得满足条件的数对变多,又或者直接将$i$放在第一个。

$f[i-1][j-1]*(i-j)$表示将$i$插入后数对变多了,也是因为$i$大于$i-1$排列中的任意一个,所以只要不插入到$j-1$个已经满足的数对中即可,那么就会有$(i-2)-(j-1))$,加上最后一个位置就是$i-j$了。

初值为$f[i][0]=1$,可以用打表和DP式子来判断。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define N 1005
#define p 2012
using namespace std;
int n,k,f[N][N];
int main(){
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++) f[i][0]=1;
for(int i=1;i<=n;i++)
for(int j=1;j<i;j++)
f[i][j]=(f[i-1][j]*(j+1)%p+(f[i-1][j-1]*(i-j))%p)%p;
printf("%d\n",f[n][k]);
return 0;
}

总结:

计数类问题,一般都是排列组合DP。尤其是在数据范围不太大,DP状态可以表示时,要考虑DP。

其实也不能算是DP,更准确的说应该是递推,考虑从$i$到$i+1$的答案变化。

DTOJ 4030: 排列计数的更多相关文章

  1. BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 911  Solved: 566[Submit][Status ...

  2. bzoj-4517 4517: [Sdoi2016]排列计数(组合数学)

    题目链接: 4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 846  Solved: 530[Submit][ ...

  3. ACM/ICPC 之 DP-浅谈“排列计数” (POJ1037)

    这一题是最近在看Coursera的<算法与设计>的公开课时看到的一道较难的DP例题,之所以写下来,一方面是因为DP的状态我想了很久才想明白,所以借此记录,另一方面是看到这一题有运用到 排列 ...

  4. 数学(错排):BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 693  Solved: 434[Submit][Status ...

  5. 【数论·错位排列】bzoj4517 排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1428  Solved: 872[Submit][Statu ...

  6. BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]

    4517: [Sdoi2016]排列计数 题意:多组询问,n的全排列中恰好m个不是错排的有多少个 容斥原理强行推♂倒她 $恰好m个不是错排 $ \[ =\ \ge m个不是错排 - \ge m+1个不 ...

  7. BZOJ 2111: [ZJOI2010]Perm 排列计数 [Lucas定理]

    2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1936  Solved: 477[Submit][ ...

  8. bzoj4517排列计数 错排+组合

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1491  Solved: 903[Submit][Statu ...

  9. BZOJ_4517_[Sdoi2016]排列计数_组合数学

    BZOJ_4517_[Sdoi2016]排列计数_组合数学 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[ ...

随机推荐

  1. PHP伪协议与文件包含漏洞1

    PHP文件包含漏洞花样繁多,需配合代码审计. 看能否使用这类漏洞时,主要看: (1)代码中是否有include(),且参数可控: 如: (2)php.ini设置:确保 allow_url_fopen= ...

  2. 2021 从零开始学Git【新版本Git - 8000字详细介绍】

    我写的这篇文章,主要是记录自己的学习过程,也希望帮助读者少踩坑(比如不同版本可能命令不兼容等).本文面向git零基础初学者,建议读者按照文中命令自己全部操作一遍(注意运行环境). 我的运行环境:win ...

  3. VMD可视化hdf5格式的分子坐标文件

    技术背景 VMD是分子动力学模拟领域常用的一款可视化软件,可以非常直观方便的展示分子的运动过程.而VMD本身对展现的格式有一定的要求,如果不是常见的rst等类型的坐标文件的话,就需要自己手动去实现一个 ...

  4. 好好编程BUAA_SE(组/团队) Scrum Meeting 博客汇总

    好好编程BUAA_SE(组/团队) Scrum Meeting 博客汇总 一.Scrum Meeting 1. Alpha Alpha阶段 第一次Scrum Meeting Alpha阶段 第二次Sc ...

  5. Request failed with status code 500以及自引用循环Self referencing loop detected for property ‘xx‘ with type

    错误Error: Request failed with status code 500 ,调试前端没问题,后端也没问题,还报错"连接超时" 在Network中找到错误Self r ...

  6. 2021.9.17考试总结[NOIP模拟55]

    有的考试表面上自称NOIP模拟,背地里却是绍兴一中NOI模拟 吓得我直接文件打错 T1 Skip 设状态$f_i$为最后一次选$i$在$i$时的最优解.有$f_i=max_{j<i}[f_j+a ...

  7. AGC019F

    题目大意 $n$ + $m$ 个问题,其中$n$ 个答案是$YES$,$m$个是$NO$的,你依次答题,每答一道,就可以立刻知道这道题的答案,求在最优策略下答错次数的期望,对$998244353$取模 ...

  8. 方阵里面的dp

    打了一场luogu的信心赛,惊讶地发现我不会T2,感觉像这样在矩阵里面的dp看起来很套路的样子,但是仔细想想还是有很多需要注意的细节. 又想到之前貌似也考过一些类似的题目 然而我并没有改 ,于是打算补 ...

  9. 安装pytorch的细节记录

    1.根据教程安装pytorch的时候发现太慢了,无法容忍,根据https://blog.csdn.net/zzq060143/article/details/88042075z在Ancona Prom ...

  10. 攻防世界 杂项 5.wireshark-1

    题目描述: 黑客通过wireshark抓到管理员登陆网站的一段流量包(管理员的密码即是答案). flag提交形式为flag{XXXX} 看到登录应该想到它是HTTP POST请求,wireshark搜 ...