CVPR2020 论文解读:具有注意RPN和多关系检测器的少点目标检测

Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector

具有注意RPN和多关系检测器的少点目标检测

目标检测的惯用方法需要大量的训练数据,准备这样高质量的训练数据很费精力的。本文中,提出一种新的少点目标检测网络,只用几个带注释的示例的看不见的类来检测目标。集中到新方法的核心是,注意力RPN,多相关检测器,以及对比训练策略,探索少点支持集和查询集之间的相似性,检测新目标同时抑制背景中的错误检测。

训练网络,提供新数据集,它包含1000类不同的目标,附加高质量的注释信息。众所周知,这是为少点目标检测最好的特定数据集之一。当少点网络训练后,不需要进一步训练和优化,就可以检测看不接见的类。这种方法是通用的,具有广泛的应用潜力。提供少点数据集中新的不同数据集上艺术状态性能。

解决什么问题

少量support的情况,检测全部的属于target目标范畴的前景

本文创新点\贡献

1.       没有反复训练和fine-tune的情况检测新物体,探索物体对的联系。可以在线检测,在proposal前面使用attention模块很有用,联系模块能过滤

2.       大量的数据集,1000个类,每个类只有少量样本,实验表明用这个数据集能达到的效果更好

本文IDEA来源

问题在于新的类别不错的框的分数低

方法

方法概述

在RPN前加一个attention,在检测器之前加了3个attention,然后还是用到了负support训练。

问题定义

给定带有target物体特写的support图片​,包含support中类别物体的query图片​,support中包含K类物体,每类N个样本,所以就是

检测。

Deep Attentioned Few-Shot Detection

权重共享的框架由多个分支组成,分别为support和query服务,support根据输入有多个分支,图片只显示了一个。

query分支是一个FasterRCNN网络,包含RPN和检测器。

利用这个框架来学习support和query之间的匹配关系,更好的学习同类之间的一般知识。

以这个框架为基础,提出了attention RPN,还有多联系检测。

Attention-Based Region Proposal Network

没有support,RPN就没有目标,后面的子分类就搞不清楚这么多的不相关目标。

使用support信息就能过滤掉大部分的背景框,还有那些不是匹配的类别

通过在RPN中用attention机制来引入support信息,来对其他类的proposal进行压制

通过逐深度的方法计算二者特征值的相似性,相似性用来生成proposal

support的特征是

,query的特征是

,相似度定义如下:

其中G是attention特征图,X作为一个卷积核在query的特征图上滑动,以一种逐深度(取平均)的方式。

使用的是RPN的底部特征,ResNet50的res4-6,发现设置S=1表现很好,这说明全局特征能提供一个好的先验

G用3×3的卷积处理,然后接分类和回归层。

Multi-Relation Detector

还是测量相似性的,在query和support的bbox之间,包含三个attention:

global-relation head:学习全局匹配的深度嵌入

local-correlation head:学习support和query的proposal之间的逐像素和逐深度对应

patch-relation head:学习匹配的深度非线性度量

三个head的分析:

第三个patch 并不理想,这个头的模型更复杂,但作者也觉得复杂的联系是难学习的

但是三个一起用效果最好,说明之间还是能相互补充的

Two-way Contrastive Training Strategy

不仅匹配而且区分

训练组

,其中

,是跟query不同的类,训练的时候只有c被标记为前景

背景的proposal很多,所以平衡在query和support中三个不同匹配的比例,保持

前景proposal 和 负[ 图中(2) ]:

背景proposal 和 正

[ 图中(1) ]:

proposal(前或后) 和 负

= 1:2:1

根据匹配的分数选全部的

,选前

,前

根据第一队确定总个数,后面按分数来,什么样的分数?

错误的根据最不匹配分数?

为什么没有proposal(前或后)和positive support pairs

的?

因为这里是算不同吗?

对于每个采样的proposa计算推荐:

​和Faster RCNN一样,

​用的二值化交叉熵

选择训练策略

RPN的选择

和0.5IoU的取前100的RPN对比。表里也显示RPN attention确实有效

CVPR2020 论文解读:少点目标检测的更多相关文章

  1. CVPR2020论文解读:3D Object Detection三维目标检测

    CVPR2020论文解读:3D Object Detection三维目标检测 PV-RCNN:Point-Voxel Feature Se tAbstraction for 3D Object Det ...

  2. CVPR2020论文解读:CNN合成的图片鉴别

    CVPR2020论文解读:CNN合成的图片鉴别 <CNN-generated images are surprisingly easy to spot... for now> 论文链接:h ...

  3. CVPR2020论文解读:三维语义分割3D Semantic Segmentation

    CVPR2020论文解读:三维语义分割3D Semantic Segmentation xMUDA: Cross-Modal Unsupervised Domain Adaptation  for 3 ...

  4. 图像分类:CVPR2020论文解读

    图像分类:CVPR2020论文解读 Towards Robust Image Classification Using Sequential Attention Models 论文链接:https:// ...

  5. CVPR2020论文解读:OCR场景文本识别

    CVPR2020论文解读:OCR场景文本识别 ABCNet:  Real-time Scene Text Spotting with Adaptive Bezier-Curve Network∗ 论文 ...

  6. CVPR2020论文解读:手绘草图卷积网络语义分割

    CVPR2020论文解读:手绘草图卷积网络语义分割 Sketch GCN: Semantic Sketch Segmentation with Graph Convolutional Networks ...

  7. 【论文解读】[目标检测]retinanet

    作为单阶段网络,retinanet兼具速度和精度(精度是没问题,速度我持疑问),是非常耐用的一个检测器,现在很多单阶段检测器也是以retinanet为baseline,进行各种改进,足见retinan ...

  8. 【论文解读】行人检测:What Can Help Pedestrian Detection?(CVPR'17)

    前言 本篇文章出自CVPR2017,四名作者为Tsinghua University,Peking University, 外加两名来自Megvii(旷视科技)的大佬. 文章中对能够帮助行人检测的ex ...

  9. CVPR2020行人重识别算法论文解读

    CVPR2020行人重识别算法论文解读 Cross-modalityPersonre-identificationwithShared-SpecificFeatureTransfer 具有特定共享特征变换 ...

随机推荐

  1. 1149 Dangerous Goods Packaging

    When shipping goods with containers, we have to be careful not to pack some incompatible goods into ...

  2. 基于Docker配置本地Gitlab

    技术背景 Github和Gitee(码云)是最常见的基于git的代码托管平台,现在基于svn的代码管理仓库已经相对比较少见了,大部分还都是企业内部的代码仓.但是基于开源的Gitlab,我们在企业内网也 ...

  3. php与mysql 绑定变量和预定义处理

    非select 语句(没有结果集的) 1.建立连接数据库 $mysqli=new mysqli("localhost","root","", ...

  4. 关于Oracle 数据库使用dba_tables或者all_tables或者user_tables统计数据时,与直接查询表统计时数据不一致的记录

    1. 今天写代码发现这个问题,这里记录一下, 不一致的原因是因为  dba_tables .all_tables.user_tables 不是实时的反应表的数据的,所以需要在查询统计之前对表进行手动分 ...

  5. POJ 1716 区间最小点个数

    题意:      给你n个区间,每个区间最少取两个元素,问你所有区间最少取几个元素(可以满足每个区间最少两个元素). 思路:      这个题目感觉挺巧妙的,之前在杭电上做过这个题目,这个题目可以用查 ...

  6. 『动善时』JMeter基础 — 8、JMeter主要元件介绍

    目录 1.测试计划(Test Plan) 2.线程组 3.取样器(sampler) 4.逻辑控制器(Logic Controller) 5.配置元件(Config Element) 6.定时器(Tim ...

  7. Day003 数据类型拓展

    数据类型拓展 整数拓展 进制 ​ 通常我们使用的都是10进制的整数,java中可以表示不同进制的整数 进制 表示方法 二进制 0b 八进制 0 十进制 默认 十六进制 0x 看看下面这个例子吧 int ...

  8. ppt技巧一四步法调整PPT

    声明:本文所有截图来源于网易云课堂--<和秋叶一起学PPT>,仅作为个人复习之用,特此声明! 常见配色方案 可以从模板或公司logo取色 图片的选择要高清.风格.主题一致

  9. 关于HTTP的一些概念

    各种概念 HTTP HTTP(HyperText Transfer Protocol) -- 超文本传输协议 它可以拆成三个部分:"超文本"."传输".&quo ...

  10. 【死磕JVM】用Arthas排查JVM内存 真爽!我从小用到大

    Arthas是啥 当我们系统遇到JVM或者内存溢出等问题的时候,如何对我们的程序进行有效的监控和排查,就发现了几个比较常用的工具,比如JDK自带的 jconsole.jvisualvm还有一个最好用的 ...