CVPR2020 论文解读:少点目标检测
CVPR2020 论文解读:具有注意RPN和多关系检测器的少点目标检测
Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector
具有注意RPN和多关系检测器的少点目标检测
目标检测的惯用方法需要大量的训练数据,准备这样高质量的训练数据很费精力的。本文中,提出一种新的少点目标检测网络,只用几个带注释的示例的看不见的类来检测目标。集中到新方法的核心是,注意力RPN,多相关检测器,以及对比训练策略,探索少点支持集和查询集之间的相似性,检测新目标同时抑制背景中的错误检测。
训练网络,提供新数据集,它包含1000类不同的目标,附加高质量的注释信息。众所周知,这是为少点目标检测最好的特定数据集之一。当少点网络训练后,不需要进一步训练和优化,就可以检测看不接见的类。这种方法是通用的,具有广泛的应用潜力。提供少点数据集中新的不同数据集上艺术状态性能。
解决什么问题
少量support的情况,检测全部的属于target目标范畴的前景
本文创新点\贡献
1. 没有反复训练和fine-tune的情况检测新物体,探索物体对的联系。可以在线检测,在proposal前面使用attention模块很有用,联系模块能过滤
2. 大量的数据集,1000个类,每个类只有少量样本,实验表明用这个数据集能达到的效果更好
本文IDEA来源
问题在于新的类别不错的框的分数低
方法
方法概述
在RPN前加一个attention,在检测器之前加了3个attention,然后还是用到了负support训练。
问题定义
给定带有target物体特写的support图片,包含support中类别物体的query图片,support中包含K类物体,每类N个样本,所以就是
检测。
Deep Attentioned Few-Shot Detection
权重共享的框架由多个分支组成,分别为support和query服务,support根据输入有多个分支,图片只显示了一个。
query分支是一个FasterRCNN网络,包含RPN和检测器。
利用这个框架来学习support和query之间的匹配关系,更好的学习同类之间的一般知识。
以这个框架为基础,提出了attention RPN,还有多联系检测。
Attention-Based Region Proposal Network
没有support,RPN就没有目标,后面的子分类就搞不清楚这么多的不相关目标。
使用support信息就能过滤掉大部分的背景框,还有那些不是匹配的类别
通过在RPN中用attention机制来引入support信息,来对其他类的proposal进行压制
通过逐深度的方法计算二者特征值的相似性,相似性用来生成proposal
support的特征是
,query的特征是
,相似度定义如下:
其中G是attention特征图,X作为一个卷积核在query的特征图上滑动,以一种逐深度(取平均)的方式。
使用的是RPN的底部特征,ResNet50的res4-6,发现设置S=1表现很好,这说明全局特征能提供一个好的先验
G用3×3的卷积处理,然后接分类和回归层。
Multi-Relation Detector
还是测量相似性的,在query和support的bbox之间,包含三个attention:
global-relation head:学习全局匹配的深度嵌入
local-correlation head:学习support和query的proposal之间的逐像素和逐深度对应
patch-relation head:学习匹配的深度非线性度量
三个head的分析:
第三个patch 并不理想,这个头的模型更复杂,但作者也觉得复杂的联系是难学习的
但是三个一起用效果最好,说明之间还是能相互补充的
Two-way Contrastive Training Strategy
不仅匹配而且区分
训练组
,其中
,是跟query不同的类,训练的时候只有c被标记为前景
背景的proposal很多,所以平衡在query和support中三个不同匹配的比例,保持
前景proposal 和 负[ 图中(2) ]:
背景proposal 和 正
[ 图中(1) ]:
proposal(前或后) 和 负
= 1:2:1
根据匹配的分数选全部的
,选前
,前
根据第一队确定总个数,后面按分数来,什么样的分数?
错误的根据最不匹配分数?
为什么没有proposal(前或后)和positive support pairs
的?
因为这里是算不同吗?
对于每个采样的proposa计算推荐:
和Faster RCNN一样,
用的二值化交叉熵
选择训练策略
RPN的选择
和0.5IoU的取前100的RPN对比。表里也显示RPN attention确实有效
CVPR2020 论文解读:少点目标检测的更多相关文章
- CVPR2020论文解读:3D Object Detection三维目标检测
CVPR2020论文解读:3D Object Detection三维目标检测 PV-RCNN:Point-Voxel Feature Se tAbstraction for 3D Object Det ...
- CVPR2020论文解读:CNN合成的图片鉴别
CVPR2020论文解读:CNN合成的图片鉴别 <CNN-generated images are surprisingly easy to spot... for now> 论文链接:h ...
- CVPR2020论文解读:三维语义分割3D Semantic Segmentation
CVPR2020论文解读:三维语义分割3D Semantic Segmentation xMUDA: Cross-Modal Unsupervised Domain Adaptation for 3 ...
- 图像分类:CVPR2020论文解读
图像分类:CVPR2020论文解读 Towards Robust Image Classification Using Sequential Attention Models 论文链接:https:// ...
- CVPR2020论文解读:OCR场景文本识别
CVPR2020论文解读:OCR场景文本识别 ABCNet: Real-time Scene Text Spotting with Adaptive Bezier-Curve Network∗ 论文 ...
- CVPR2020论文解读:手绘草图卷积网络语义分割
CVPR2020论文解读:手绘草图卷积网络语义分割 Sketch GCN: Semantic Sketch Segmentation with Graph Convolutional Networks ...
- 【论文解读】[目标检测]retinanet
作为单阶段网络,retinanet兼具速度和精度(精度是没问题,速度我持疑问),是非常耐用的一个检测器,现在很多单阶段检测器也是以retinanet为baseline,进行各种改进,足见retinan ...
- 【论文解读】行人检测:What Can Help Pedestrian Detection?(CVPR'17)
前言 本篇文章出自CVPR2017,四名作者为Tsinghua University,Peking University, 外加两名来自Megvii(旷视科技)的大佬. 文章中对能够帮助行人检测的ex ...
- CVPR2020行人重识别算法论文解读
CVPR2020行人重识别算法论文解读 Cross-modalityPersonre-identificationwithShared-SpecificFeatureTransfer 具有特定共享特征变换 ...
随机推荐
- 1149 Dangerous Goods Packaging
When shipping goods with containers, we have to be careful not to pack some incompatible goods into ...
- 基于Docker配置本地Gitlab
技术背景 Github和Gitee(码云)是最常见的基于git的代码托管平台,现在基于svn的代码管理仓库已经相对比较少见了,大部分还都是企业内部的代码仓.但是基于开源的Gitlab,我们在企业内网也 ...
- php与mysql 绑定变量和预定义处理
非select 语句(没有结果集的) 1.建立连接数据库 $mysqli=new mysqli("localhost","root","", ...
- 关于Oracle 数据库使用dba_tables或者all_tables或者user_tables统计数据时,与直接查询表统计时数据不一致的记录
1. 今天写代码发现这个问题,这里记录一下, 不一致的原因是因为 dba_tables .all_tables.user_tables 不是实时的反应表的数据的,所以需要在查询统计之前对表进行手动分 ...
- POJ 1716 区间最小点个数
题意: 给你n个区间,每个区间最少取两个元素,问你所有区间最少取几个元素(可以满足每个区间最少两个元素). 思路: 这个题目感觉挺巧妙的,之前在杭电上做过这个题目,这个题目可以用查 ...
- 『动善时』JMeter基础 — 8、JMeter主要元件介绍
目录 1.测试计划(Test Plan) 2.线程组 3.取样器(sampler) 4.逻辑控制器(Logic Controller) 5.配置元件(Config Element) 6.定时器(Tim ...
- Day003 数据类型拓展
数据类型拓展 整数拓展 进制 通常我们使用的都是10进制的整数,java中可以表示不同进制的整数 进制 表示方法 二进制 0b 八进制 0 十进制 默认 十六进制 0x 看看下面这个例子吧 int ...
- ppt技巧一四步法调整PPT
声明:本文所有截图来源于网易云课堂--<和秋叶一起学PPT>,仅作为个人复习之用,特此声明! 常见配色方案 可以从模板或公司logo取色 图片的选择要高清.风格.主题一致
- 关于HTTP的一些概念
各种概念 HTTP HTTP(HyperText Transfer Protocol) -- 超文本传输协议 它可以拆成三个部分:"超文本"."传输".&quo ...
- 【死磕JVM】用Arthas排查JVM内存 真爽!我从小用到大
Arthas是啥 当我们系统遇到JVM或者内存溢出等问题的时候,如何对我们的程序进行有效的监控和排查,就发现了几个比较常用的工具,比如JDK自带的 jconsole.jvisualvm还有一个最好用的 ...