多元线性回归的具体实现

  1. 导入需要的所有软件包:



     
  2. 因为各特征的数据范围不同,需要归一化特征数据。为此定义一个归一化函数。另外,这里添加一个额外的固定输入值将权重和偏置结合起来。为此定义函数 append_bias_reshape()。该技巧有时可有效简化编程:


     
  3. 现在使用 TensorFlow contrib 数据集加载波士顿房价数据集,并将其划分为 X_train 和 Y_train。注意到 X_train 包含所需要的特征。可以选择在这里对数据进行归一化处理,也可以添加偏置并对网络数据重构:
  4. 为训练数据声明 TensorFlow 占位符。观测占位符 X 的形状变化:


     
  5. 为权重和偏置创建 TensorFlow 变量。通过随机数初始化权重:                                                                                                                                                                                                                             
  6. 定义要用于预测的线性回归模型。现在需要矩阵乘法来完成这个任务:                                                                                                                 
  7. 为了更好地求微分,定义损失函数:                                                                     

  8. 选择正确的优化器:


     
  9. 定义初始化操作符:
  10. 开始计算图:


     
  11. 绘制损失函数:

    在这里,我们发现损失随着训练过程的进行而减少:

本节使用了 13 个特征来训练模型。简单线性回归和多元线性回归的主要不同在于权重,且系数的数量始终等于输入特征的数量。下图为所构建的多元线性回归模型的 TensorBoard 图:

现在可以使用从模型中学到的系数来预测房价:

 

TensorFlow多元线性回归实现的更多相关文章

  1. TensorFlow 多元线性回归【波士顿房价】

    1数据读取 1.1数据集解读 1.2引入包 %matplotlib notebook import tensorflow as tf import matplotlib.pyplot as plt i ...

  2. 【TensorFlow篇】--Tensorflow框架初始,实现机器学习中多元线性回归

    一.前述 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,T ...

  3. 利用TensorFlow实现多元线性回归

    利用TensorFlow实现多元线性回归,代码如下: # -*- coding:utf-8 -*- import tensorflow as tf import numpy as np from sk ...

  4. Tensorflow之多元线性回归问题(以波士顿房价预测为例)

    一.根据波士顿房价信息进行预测,多元线性回归+特征数据归一化 #读取数据 %matplotlib notebook import tensorflow as tf import matplotlib. ...

  5. TensorFlow从0到1之TensorFlow实现多元线性回归(16)

    在 TensorFlow 实现简单线性回归的基础上,可通过在权重和占位符的声明中稍作修改来对相同的数据进行多元线性回归. 在多元线性回归的情况下,由于每个特征具有不同的值范围,归一化变得至关重要.这里 ...

  6. R语言解读多元线性回归模型

    转载:http://blog.fens.me/r-multi-linear-regression/ 前言 本文接上一篇R语言解读一元线性回归模型.在许多生活和工作的实际问题中,影响因变量的因素可能不止 ...

  7. coursera机器学习笔记-多元线性回归,normal equation

    #对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...

  8. 多元线性回归 ——模型、估计、检验与预测

    一.模型假设 传统多元线性回归模型 最重要的假设的原理为: 1. 自变量和因变量之间存在多元线性关系,因变量y能够被x1,x2-.x{k}完全地线性解释:2.不能被解释的部分则为纯粹的无法观测到的误差 ...

  9. 多元线性回归----Java简单实现

    http://www.cnblogs.com/wzm-xu/p/4062266.html 多元线性回归----Java简单实现   学习Andrew N.g的机器学习课程之后的简单实现. 课程地址:h ...

随机推荐

  1. 百度sitemap.xml

    <?xml version="1.0" encoding="UTF-8" ?> <urlset xmlns="http://www. ...

  2. 基于 RTF specification v1.7 的 RTF 文件解析及 OLE 对象提取(使用 Python 开发)

    0x01 Office RTF 文件介绍 RTF 文件也称富文本格式(Rich Text Format, 一般简称为 RTF),意为多文本格式是由微软公司开发的跨平台文档格式.大多数的文字处理软件都能 ...

  3. (2) arm 指令条件码

    条件码助记符 标志 含义 EQ Z=1 相等 NE Z=0 不相等 CS/HS C=1 无符号数大于或等于 CC/LO C=0 无符号数小于 MI N=1 负数 PL N=0 正数或0 VS V=1 ...

  4. iwrite复制攻略

    打开iwrite,一提交作业,发现: 这可咋办啊! 那就跟着步骤来呗: 按F12打开元素审查 点一下左上角 再点一下文本框,就能定位到HTML中的位置 在文本框中写几个字母,康康具体位置: 那就复制进 ...

  5. java之Map和Collection

    java中保存对象的容器可分为两类: 1.Map.Map是以键值对的形式来保存一组对象,可以通过键来查找值. 2.Collection.用来保存独立对象的序列.Collection又可分为三种类型: ...

  6. 基于蒙特卡洛树搜索(MCTS)的多维可加性指标的异常根因定位

    摘要:本文是我在从事AIOps研发工作中做的基于MCTS的多维可加性指标的异常根因定位方案,方案基于清华大学AIOPs实验室提出的Hotspot算法,在此基础上做了适当的修改. 1        概述 ...

  7. 缓冲流以及JAVA路径相关问题

    缓冲流 缓冲流的基本原理,是在创建流对象时,会创建一个内置的默认大小的缓冲区数组,通过缓冲区读写,减少系统IO 次数,从而提高读写的效率. 字节缓冲流 按字节处理 字符缓冲流 按字符处理 实例练习:文 ...

  8. Windows服务与会话的理解

    服务 Windows NT操作系统是基于客户/服务器模式的(C/S).将操作系统中最基本的部分放到内核中,而把操作系统的绝大多数部分都放到微内核外面的一组服务器(进程)中实现.如对进程管理的进程管理服 ...

  9. 免费JS甘特图组件dhtmlxgantt

    安装 参考:https://docs.dhtmlx.com/gantt/desktop__install_with_bower.html 可使用NuGet.Bower.npm包管理器安装(应用在asp ...

  10. linux跨文件复制粘贴

    跨文件是这样的: 复制a.txt的第20行至第30行到b.txt中vi a.txt:2010yy:e b.txtp