PyTorch 自动微分

autograd 包是 PyTorch 中所有神经网络的核心。首先简要地介绍,然后将会去训练的第一个神经网络。该 autograd 软件包为 Tensors 上的所有操作提供自动微分。是一个由运行定义的框架,这意味着以代码运行方式定义后向传播,并且每次迭代都可以不同。从 tensor 和 gradients 来举一些例子。

1、TENSOR

torch.Tensor 是包的核心类。如果将其属性 .requires_grad 设置为 True,则会开始跟踪针对 tensor 的所有操作。完成计算后,可以调用 .backward() 来自动计算所有梯度。该张量的梯度将累积到 .grad 属性中。

要停止 tensor 历史记录的跟踪,可以调用 .detach(),将其与计算历史记录分离,并防止将来的计算被跟踪。

要停止跟踪历史记录(和使用内存),还可以将代码块使用 with torch.no_grad(): 包装起来。在评估模型时,这是特别有用,因为模型在训练阶段具有 requires_grad = True 的可训练参数有利于调参,但在评估阶段不需要梯度。

还有一个类,对于 autograd 实现非常重要那就是 Function。Tensor 和 Function 互相连接并构建一个非循环图,保存整个完整的计算过程的历史信息。每个张量都有一个 .grad_fn 属性,保存着创建了张量的 Function 的引用,(如果用户自己创建张量,则g rad_fn 是 None )。

如果想计算导数,可以调用 Tensor.backward()。如果 Tensor 是标量(即包含一个元素数据),则不需要指定任何参数backward(),但是如果有更多元素,则需要指定一个gradient 参数来指定张量的形状。

import torch

创建一个张量,设置 requires_grad=True 来跟踪与相关的计算

x = torch.ones(2, 2, requires_grad=True)

print(x)

输出:

tensor([[1., 1.],

[1., 1.]], requires_grad=True)

针对张量做一个操作

y = x + 2

print(y)

输出:

tensor([[3., 3.],

[3., 3.]], grad_fn=<AddBackward0>)

y 作为操作的结果被创建,所以有 grad_fn

print(y.grad_fn)

输出:

<AddBackward0 object at 0x7fe1db427470>

针对 y 做更多的操作:

z = y * y * 3

out = z.mean()

print(z, out)

输出:

tensor([[27., 27.],

[27., 27.]], grad_fn=<MulBackward0>)

tensor(27., grad_fn=<MeanBackward0>)

.requires_grad_( ... ) 会改变张量的 requires_grad 标记。输入的标记默认为 False ,如果没有提供相应的参数。

a = torch.randn(2, 2)

a = ((a * 3) / (a - 1))

print(a.requires_grad)

a.requires_grad_(True)

print(a.requires_grad)

b = (a * a).sum()

print(b.grad_fn)

输出:

False

True

<SumBackward0 object at 0x7fe1db427dd8>

梯度:

现在后向传播,因为输出包含了一个标量,out.backward() 等同于out.backward(torch.tensor(1.))。

out.backward()

打印梯度 d(out)/dx

print(x.grad)

输出:

tensor([[4.5000, 4.5000],

[4.5000, 4.5000]])

原理解释:

现在让看一个雅可比向量积的例子:

x = torch.randn(3, requires_grad=True)

y = x * 2

while y.data.norm() < 1000:

y = y * 2

print(y)

输出:

tensor([ -444.6791,   762.9810, -1690.0941], grad_fn=<MulBackward0>)

现在在这种情况下,y 不再是一个标量。torch.autograd 不能够直接计算整个雅可比,但是如果只想要雅可比向量积,只需要简单的传递向量给 backward 作为参数。

v = torch.tensor([0.1, 1.0, 0.0001], dtype=torch.float)

y.backward(v)

print(x.grad)

输出:

tensor([1.0240e+02, 1.0240e+03, 1.0240e-01])

可以通过将代码包裹在 with torch.no_grad(),停止对从跟踪历史中 的 .requires_grad=True 的张量自动求导。

print(x.requires_grad)

print((x ** 2).requires_grad)

with torch.no_grad():

print((x ** 2).requires_grad)

输出:

True

True

False

PyTorch 自动微分的更多相关文章

  1. PyTorch自动微分基本原理

    序言:在训练一个神经网络时,梯度的计算是一个关键的步骤,它为神经网络的优化提供了关键数据.但是在面临复杂神经网络的时候导数的计算就成为一个难题,要求人们解出复杂.高维的方程是不现实的.这就是自动微分出 ...

  2. PyTorch 自动微分示例

    PyTorch 自动微分示例 autograd 包是 PyTorch 中所有神经网络的核心.首先简要地介绍,然后训练第一个神经网络.autograd 软件包为 Tensors 上的所有算子提供自动微分 ...

  3. pytorch学习-AUTOGRAD: AUTOMATIC DIFFERENTIATION自动微分

    参考:https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html#sphx-glr-beginner-blitz-autog ...

  4. MindSpore:自动微分

    MindSpore:自动微分 作为一款「全场景 AI 框架」,MindSpore 是人工智能解决方案的重要组成部分,与 TensorFlow.PyTorch.PaddlePaddle 等流行深度学习框 ...

  5. 附录D——自动微分(Autodiff)

    本文介绍了五种微分方式,最后两种才是自动微分. 前两种方法求出了原函数对应的导函数,后三种方法只是求出了某一点的导数. 假设原函数是$f(x,y) = x^2y + y +2$,需要求其偏导数$\fr ...

  6. 自动微分(AD)学习笔记

    1.自动微分(AD) 作者:李济深链接:https://www.zhihu.com/question/48356514/answer/125175491来源:知乎著作权归作者所有.商业转载请联系作者获 ...

  7. <转>如何用C++实现自动微分

    作者:李瞬生转摘链接:https://www.zhihu.com/question/48356514/answer/123290631来源:知乎著作权归作者所有. 实现 AD 有两种方式,函数重载与代 ...

  8. (转)自动微分(Automatic Differentiation)简介——tensorflow核心原理

    现代深度学习系统中(比如MXNet, TensorFlow等)都用到了一种技术——自动微分.在此之前,机器学习社区中很少发挥这个利器,一般都是用Backpropagation进行梯度求解,然后进行SG ...

  9. 【tensorflow2.0】自动微分机制

    神经网络通常依赖反向传播求梯度来更新网络参数,求梯度过程通常是一件非常复杂而容易出错的事情. 而深度学习框架可以帮助我们自动地完成这种求梯度运算. Tensorflow一般使用梯度磁带tf.Gradi ...

随机推荐

  1. 【Springboot】FastJson与Jackson全局序列化方式的配置和相关工具类

    springboot 版本: <parent> <groupId>org.springframework.boot</groupId> <artifactId ...

  2. hdu2846 字典树(带id的)

    题意:      给你一些模式串,然后给你一些提问,每个提问是给你一个串,问你这个串在上 面的模式串中出现的次数. 思路:       一开始想到hash,但是因为用的是map,所以超时了,map的操 ...

  3. CVE-2011-0104:Microsoft Office Excel 栈溢出漏洞修复分析

    0x01 前言 上一篇讲到了 CVE-2011-0104 漏洞的成因和分析的方法,并没有对修复后的程序做分析.之后在一次偶然的情况下,想看一看是怎么修复的,结果却发现了一些问题 环境:修复后的 EXC ...

  4. 使用 cmake 来搭建跨平台的应用程序框架:C语言版本

    目录 一.前言 二.示例代码说明 1. 功能描述 2. 文件结构 3. cmake 构建步骤 4. Utils 目录说明 5. Application 目录说明 三.Linux 系统下操作步骤 1. ...

  5. lower_bound和upper_bound的实现

    int lowerBound(int* nums, int numsSize, int target) { //注意left和right的初始值必须是left = 0, right = numsSzi ...

  6. Javac·编码GBK的不可映射字符

    阅文时长 | 0.04分钟 字数统计 | 79.2字符 主要内容 | 1.引言&背景 2.声明与参考资料 『Javac·编码GBK的不可映射字符』 编写人 | SCscHero 编写时间 | ...

  7. 25.Qt Quick QML-500行代码实现"合成大西瓜游戏"

    "合成大西瓜"这个游戏在年前很火热,还上过微博热搜,最近便玩了一阵还挺有意思的,所以研究了一下小球碰撞原理,自己亲自手写碰撞算法来实现一个合成大西瓜游戏.并支持任意大小布局,你想玩 ...

  8. Linux 系统定时任务:crontab,anacron

    Linux 系统定时任务:crontab,anacron 一.Cron 服务 1. 启动服务 service cron start 2. 关闭服务 service cron stop 3. 重启服务 ...

  9. IEEE754标准

    以下计算按规格化规定: S:符号位 M:分数值 E:指数偏移值 单精度浮点数(32bit): NUM_single = (-1)^S *  1.M   *   2^(E-127) 双精度浮点数(64b ...

  10. Python菜鸟100例

    题目地址 #-*- codeing = utf-8 -*- #@Time : 2021/3/18 21:17 #@Author : HUGBOY #@File : 1.py #@Software: P ...